

Deliverable D2.10

Final version of metadata per country of all national gridded datasets created within module 2

Annex 3 – Description of MASH and MISH algorithms

Contract number: OJEU 2010/S 110-166082 Deliverable: D2.10 Author: Zita Bihari et al. Date: 21-01-2013 Version: final

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	2

The following pages present the description of the applied data homogenization method MASH and interpolation method MISH. The manuals contain all the information regarding these processes from the mathematical background to the detailed introduction of the program systems and examples of application. Additional methods used for special parameters such as daily wind direction are described in deliverables D1.12, D2.5, D2.8 and D2.9.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	3

Multiple Analysis of Series for Homogenization (MASH v3.03)

Tamás Szentimrey

I. MATHEMATICAL BASIS	9
II. THE STRUCTURE OF PROGRAM SYSTEM	25
III. THE MASH SYSTEM	27
IV. THE SAM SYSTEM (Seasonal Application of MASH)	31
V. EXAMPLE FOR APPLICATION OF MASH SYSTEM	39
VI. EXAMPLE FOR APPLICATION OF SAM SYSTEM	48
VII. HOMOGENIZATION OF DAILY DATA	56

Meteorological Interpolation based on Surface Homogenized Data Basis (MISH v1.02)

Tamás Szentimrey and Zita Bihari	
I. MATHEMATICAL BACKGROUND	71
II. THE PROGRAM SYSTEM MISH	82
II.1 GENERAL COMMENTS	82
II.2 THE STRUCTURE OF PROGRAM SYSTEM	84
III. EXAMPLE FOR APPLICATION OF MISH SYSTEM	90
III.1 EXAMPLE FOR TEMPERATURE	90
III.2 EXAMPLE FOR PRECIPITATION	96

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	4	

PREFACE of Version MASHv3.03

The developments of the new version MASHv3.03 are connected with four topics.

The first is the input/output operations. At the present version the COST Action ES0601 (HOME) format also can be used and the description of this file format is enclosed. The converting programs can be found by the scheme of program system (see pages 21, 56).

The second is a modification of homogenization procedure of monthly series at SAM system (page 28). At the new version we recommend to start with a preliminary examination of the annual series. Normally MASH procedure would start with the monthly series and later examine the seasonal and annual series. The new possibility is to begin with an examination of annual series and to use the detected breaks as preliminary information (metadata) for the standard application of MASH for monthly data.

The third topic is the new developments for automation that aims to obtain automatic procedures. These automatic 'user friendly' procedures make the homogenization easier for the users. The directions for use can be found at the descriptions of "MASH in Practice" (p. 23), "SAM in Practice" (p. 28-29), which sections are strongly recommended for the users.

As regards the fourth topic, there were also some developments for daily data. Some new program procedures were elaborated for missing data completion and data quality control. The description of these procedures can be found on page 59.

PREFACE of Version MASHv3.02

The MASH procedure was developed originally for homogenization of monthly series. It is a relative method and depending on the distribution of examined meteorological element additive (e.g. temperature) or multiplicative (e.g. precipitation) model can be applied. In the earlier program system MASHv2.03 the following subjects were elaborated for monthly series: series comparison, break point (change point) and outlier detection, correction of series, missing data completion, automatic usage of meta data and last but not least a verification procedure to evaluate the homogenization results.

The next version MASHv3.01 was developed for homogenization of daily data furthermore for quality control of daily data and missing data completion. During the procedure normal distribution and additive model were assumed for daily data that are appropriate for temperature, pressure etc. elements.

The new version MASHv3.02 is extended also for homogenization of daily precipitation data. The procedure developed for daily data is in accordance with the multiplicative (or cumulative) model that is assumed for monthly precipitation sum data. Quality control of daily data and missing data completion are also performed during the procedure.

The program system for homogenization of monthly series was not changed. Only exception is the type of usable coordinates that were changed for filambda type, because perhaps it is more general.

PREFACE of Version MASHv2.03

The MASH method was developed in the Hungarian Meteorological Service (see References). It is a relative homogeneity test procedure that does not assume the reference series are homogeneous. Possible break points and shifts can be detected and adjusted through mutual comparisons of series within the same climatic area. The candidate series is chosen from the available time series and the remaining series are considered as reference series. The role of series changes step by step in the course of the procedure. Depending on the climatic elements, additive or multiplicative models are applied. The second case can be transformed into the first one by logarithmization.

Several difference series are constructed from the candidate and weighted reference series. The optimal weighting is determined by minimizing the variance of the difference series, in order to increase the efficiency of the statistical tests. Providing that the candidate series is the only common series of all the difference series, break points detected in all the difference series can be attributed to the candidate series.

A new multiple break points detection procedure has been developed which takes the problem of significance and efficiency into account. The significance and the efficiency are formulated according to the conventional statistics related to type one and type two errors, respectively. This test obtains not only estimated break points and shift values, but the corresponding confidence intervals as well. The series can be adjusted by using the point and interval estimates.

Since a MASH program system has been developed for the PC, the application of this method is relatively easy, with emphasis on GAME of MASH (see program MASHGAME.BAT), which is a playful version of MASH procedure for homogenization. This version can be developed towards the automation.

Some developments are connected with special problems of the homogenization of climatic time series.

One of them is the relation of monthly, seasonal and annual series. The problem arises from the fact, that the signal to noise ratio is probably less in case of monthly series than in case of derived seasonal or annual ones. Consequently the inhomogeneity can be detected easier at the derived series although we intend to adjust the monthly series (see the SAM system).

Another problem is connected with the usage of Meta Data in the course of homogenization procedure. The developed version of MASH system makes possible to use the meta data information - in particular the probable dates of break points - automatically.

The new version includes a new transformation procedure as well, which has been developed for the multiplicative model on purpose to solve the problem arising from the values coming near to zero.

A new part of MASH system is a verification procedure (MASHVERI.BAT) which makes possible to evaluate the actual or the final stage of the homogenization. We think the verification is an important part of the topic of homogenization since all over the world there are a lot of so called homogenized series however their reliability sometimes is doubtful. The basic conception of the verification procedure is that the confidence in the homogenized series may be increased by the joint comparative mathematical examination of the original and the homogenized series systems.

The last development is connected with certain automation of the procedures (see program: SAMTEST.BAT).

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	6

(MOTTO)

PROBLEM of HOMOGENIZATION

Basis: DATA

Tools:

MATHEMATIC	'S :	abstract formulation
META DATA	:	historical, climatological information
SOFTWARE	:	automation

SOLUTION = MATHEMATICS + META DATA + SOFTWARE

(i) without SOFTWARE:

MATHEMATICS + META DATA = THEORY WITHOUT BENEFIT

(ii) without META DATA: MATHEMATICS + SOFTWARE = GAMBLING

(iii) without MATHEMATICS:

META DATA + SOFTWARE = "STONE AGE" + "BILL GATES"

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	7

BASIC PRINCIPLES of MASH Procedure

- Relative homogeneity test procedure.
- Step by step procedure: the role of series (candidate or reference series) changes step by step in the course of the procedure.
- Additive or cumulative model can be used depending on the climate elements.
- Monthly, seasonal or annual time series can be homogenized.
- In case of having monthly series for all the 12 months, the monthly, seasonal and annual series can be homogenized together.
 (SAM procedure: Seasonal Application of MASH)
- The daily inhomogeneities can be derived from the monthly ones.
- META DATA (probable dates of break points) can be used automatically.
- The actual or the final stage of the homogenization can be verified.

PROGRAMMED STATISTICAL PROCEDURE (SOFTWARE: MASHv2.03)

EXAMPLE. Let us assume that there is a difficult stochastic problem.

In case of having relatively few statistical information:

- an intelligent man is possibly able to solve the problem, but it is timeconsuming;
- the solution of the problem can not be programmed.

In case of increasing the amount of statistical information:

- one is unable to discuss and evaluate all the information,
- but then the solution of the problem can be programmed. (CHESS!!)

AIM, REQUIREMENT

- Development of mathematical methodology in order to increase the amount of statistical information.
- Development of algorithms for optimal using of both the statistical and the 'meta data' information.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	8

THE MAIN CLIMATOLOGICAL AND STATISTICAL PROBLEMS

Modelling of the stochastic relationship between data series:

additive model, cumulative (multiplicative) model depending on climate elements, distribution of series elements.

Modelling of "inhomogeneity": break points, shifts, outliers etc..

Comparison of the examined series (Relative Test): methods for multiple comparison of the candidate series with more reference series; selection for "good" reference series systems, weighting of reference series, estimation of weighting factors. *Multiple Comparison by Optimum Interpolation.*

Missing values: methods for closing gaps in the series.

Break points detection:

mathematical formalization according to the statistical conventions:

- first kind error (significance)
- second kind error (efficiency),

point estimation and interval estimation (confidence interval),

procedure for multiple break points and outliers detection.

Correction (adjusting) of candidate series:

separation of the detected break points and outliers for the candidate series, point estimation, interval estimation (confidence interval) for the shifts.

Relation of monthly series, seasonal series, annual series:

SAM (Seasonal Application of MASH).

Homogenization of daily data: methodology.

Meta Data: automatic using of station history.

Automation: interactive, automatic procedures for homogenization.

Verification: procedure to evaluate the homogenization results.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	9

I. THE MATHEMATICAL BASIS OF 'MASH' PROCEDURE (draft version)

1. STATISTICAL MODELLING

1.1 Additive Model (for example temperature)

Examined series

 $X_{j}(t) = C_{j}(t) + IH_{j}(t) + \varepsilon_{j}(t) \qquad (j = 1, 2, ..., N; t = 1, 2, ..., n)$

C: climate change; IH: inhomogeneity, ε : noise

1.2 Multiplicative Model (for example monthly or seasonal precipitation)

Examined series

$$X_{j}^{*}(t) = C_{j}^{*}(t) \cdot IH_{j}^{*}(t) \cdot \varepsilon_{j}^{*}(t) \qquad (j = 1, 2, \dots, N; t = 1, 2, \dots, n)$$

 C^* : climate change; IH^* : inhomogeneity, ε^* : noise

Logarithmization for Additive Model

 $X_{i}(t) = C_{i}(t) + IH_{i}(t) + \varepsilon_{i}(t) \qquad (j = 1, 2, ..., N; t = 1, 2, ..., n)$

where

$$X_{j}(t) = \ln X_{j}^{*}(t) , \quad C_{j}(t) = \ln C_{j}^{*}(t) ,$$
$$IH_{j}(t) = \ln IH_{j}^{*}(t) , \quad \varepsilon_{j}(t) = \ln \varepsilon_{j}^{*}(t)$$

Problem

If $X_i^*(t)$ values are near or equal to 0.

This problem can be solved by a Transformation Procedure which increases slightly the little values. Consequently the Multiplicative Model can be transformed into the Additive One.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	10

2. MULTIPLE COMPARISON OF THE EXAMINED SERIES

<u>Candidate series and its inhomogeneity:</u> $X_c(t)$, $IH_c(t)$ $c \in \{1, 2, ..., N\}$ <u>Set of indexes of reference series:</u> $R_c \subset \{1, 2, ..., N\}$ $(i \in R_c , \text{if } C_i(t) \approx C_c(t))$

Optimal Difference Series belonging to the subset $R_c^{(m)} \subseteq R_c$ $(m = 1,..,2^{|R_c|} - 1)$ (||:numerosity)

$$Z_{c}^{(m)}(t) = X_{c}(t) - \sum_{i \in R_{c}^{(m)}} w_{i} \cdot X_{i}(t), \text{ where } \sum w_{i} = 1, \quad w_{i} \ge 0$$

and $V(Z_c^{(m)}) = Variance (Z_c^{(m)}) = \min_{w}$

Result:

$$Z_{c}^{(m)}(t) = IH_{c}(t) - \sum_{i \in R_{c}^{(m)}} w_{i} \cdot IH_{i}(t) + \delta_{c}^{(m)}(t) = IH_{c}(t) - IH_{R_{c}^{(m)}}(t) + \delta_{c}^{(m)}(t)$$

Example:

If
$$V(Z_c^{(m)}) = \text{Variance}(\delta_c^{(m)}) = 0$$
 and $IH_{R_c^{(m)}}(t) \equiv 0$ then $Z_c^{(m)}(t) \equiv IH_c(t)$

Optimal Difference Series System:
$$Z_c^{(m)}(t)$$
, $m \in M^* \subset \left\{1, ..., 2^{|R_c|} - 1\right\}$, $|M^*| \ge 2$

(i) $Z_c^{(m)}(t)$: Optimal Difference Series belonging to subset $R_c^{(m)}$ (for efficiency)

- (ii) $\bigcap_{m \in M^*} R_c^{(m)} = \emptyset$ (for identification of inhomogeneity of candidate series)
- (iii) maximum (Variance($Z_c^{(m)}$)) = minimum $_{M^*}$ (for efficiency)
- (iv) If (i), (ii), (iii) are fulfilled then let $|M^*|$ be minimal too! (for efficiency)

CARPATCLIM <i>Report</i>	Date 01/03/2013	Versio <i>final</i>	0	
3. EXAMINATION ()F DIFFERENCE SEI	RIES		
3.1 Break Points Dete	ection			
Difference series: $Z(IH(t)$	$I(t) = IH(t) + \delta(t)$	$(t=1,2,\ldots,n)$		
1 P	1	P_L	n	
The real break points (to the left): $\{1 \le P_1 < P_1\}$	$P_2 < \dots < P_L < n$		
	nts: $\begin{cases} 1 \le \stackrel{\wedge}{P_1} < \stackrel{\wedge}{P_2} < \dots \end{cases}$		<u>N)</u>	
		$\dots < 1 L < n$		
(i) <u>Type one error (sig</u> \wedge	gnificance)			
There exists such a P_{i}	!:			
interval $(\hat{P}_{l-1}, \hat{P}_{l+1})$	$\bigcap \text{ set}\{P_1 < P_2 < \dots < P_n\}$	$P_L \} = \emptyset$		
	homogeneous		IH(t)	
$\stackrel{\wedge}{P_{l-1}}$	\hat{P}_{l}	\hat{P}_{l+1}	_	

We have to intend to give the probability of type one error, i.e. the significance level!

(ii) <u>Type two error (efficiency)</u>

There exists such a real break point that we could not detect. As much as possible!

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	12

3.2 Significant Procedure for Break Points Detection

Inhomogeneity measure for all the intervals

Statistics: $\text{INH}([k, l]) \ge 0$ $\forall k, l : 1 \le k < l \le n$ and $\text{INH}([i, j]) \le \text{INH}([k, l])$, if $[i, j] \subseteq [k, l]$

Test Statistic of difference series

The inhomogeneity of difference series Z(t) can be characterized by the Test Statistic: TS = INH([1, n])

<u>The critical value (α) (by Monte Carlo Method)</u>

 $P(TS > \alpha \mid if Z(t) \text{ homogeneous }) = sig. level (= 0.1, 0.05, 0.01)$

Test Statistic can be compared to the critical value and in case of homogeneity it should be less, on the given significance level.

PROPERTIES OF THE DETECTING PROCEDURE

(FOR THE PURPOSE OF SIGNIFICANCE AND EFFICIENCY)

If the detected break points:
$$\left\{1 \le \stackrel{\wedge}{P_1} < \stackrel{\wedge}{P_2} < \dots < \stackrel{\wedge}{P_L} < n\right\}, \text{ then}$$
$$\underset{l=1,\dots,\hat{L}+1}{\text{maximum}} \left(\text{INH}\left(\left(\stackrel{\wedge}{P_{l-1}}, \stackrel{\wedge}{P_l}\right]\right)\right) \le \alpha < \underset{l=1,\dots,\hat{L}}{\text{minimum}} \left(\text{INH}\left(\left(\stackrel{\wedge}{P_{l-1}}, \stackrel{\wedge}{P_{l+1}}\right]\right)\right)$$

i.e. on the given significance level:

- the intervals $(\stackrel{\wedge}{P}_{l-1}, \stackrel{\wedge}{P}_{l+1}]$ are not homogeneous, consequently the detected break points $\stackrel{\wedge}{P}_{l}$ are not superfluous,
- the intervals $(\stackrel{\wedge}{P}_{l-1}, \stackrel{\wedge}{P}_{l}]$ can be accepted to be homogeneous.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	13

Confidence Intervals

Confidence intervals also can be given for the break points on the

confidence level (1-sig. level): $I_l \qquad l = 1,...,L$

3.3 Estimation of Shifts

Point estimation; Confidence intervals for the shifts

4. EVALUATION OF HOMOGENEITY OF CANDIDATE SERIES $X_c(t)$

Based on the Test Statistics (TS) belonging to the Optimal Difference Series:

$$Z_c^{(m)}(t)$$
 $(m = 1,..,2^{|R_c|} - 1)$

5. CORRECTION OF CANDIDATE SERIES $X_c(t)$

Based on the examination of the Optimal Difference Series System:

$$Z_{c}^{(m)}(t)$$
, $m \in \mathbf{M}^{*} \subset \left\{ 1, \dots, 2^{|R_{c}|} - 1 \right\}$, $|\mathbf{M}^{*}| \ge 2$

BASIC PRINCIPLE OF BREAK POINT DETECTION FOR CANDIDATE SERIES

Let us assume, that $\stackrel{\wedge}{P}^{(m)}(m \in M^*)$: detected Break Points, $I^{(m)}(m \in M^*)$: Confidence Intervals belonging to the Optimal Difference Series $Z_c^{(m)}(t)(m \in M^*)$, AND

$$\bigcap_{m \in M^*} \mathbf{I}^{(m)} \neq \emptyset \qquad \text{as well as} \qquad \forall \quad \stackrel{\wedge}{P}{}^{(m)} \in \bigcap_{m \in M^*} \mathbf{I}^{(m)}$$

DECISION

The "most probable" $\stackrel{\wedge}{P}{}^{(m)}$ is a Break Point of the Candidate Series $X_c(t)$.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	14

6. USING OF META DATA (Meta Data: probable dates of break points)

BASIC PRINCIPLE OF BREAK POINT DETECTION BY USING OF META DATA

Candidate series and its Meta Data:

$$X_{c}(t) \quad , \quad \Delta_{c} = \left\{ 1 \le D_{1}^{(c)} < D_{2}^{(c)} < \dots < D_{K_{c}}^{(c)} < n \right\}$$

Optimal Difference Series System: $Z_{c}^{(m)}(t) , \quad m \in M^{*}, \quad \left| M^{*} \right| \ge 2$

Let us assume, that

 $\stackrel{\wedge}{P}^{(m)} (m \in M^*) : \text{detected Break Points,}$ $I^{(m)} (m \in M^*) : \text{Confidence Intervals}$ belonging to the Optimal Difference Series $Z_c^{(m)}(t) (m \in M^*)$, AND

 $\bigcap_{m \in M^*} \mathbf{I}^{(m)} \neq \emptyset \qquad \text{as well as} \qquad \forall \ \stackrel{\wedge}{P}{}^{(m)} \ \in \bigcap_{m \in M^*} \mathbf{I}^{(m)}$

BASIC DECISION RULE

(i) If
$$Q := \left(\bigcap_{m \in M^*} I^{(m)}\right) \cap \Delta_c \neq \emptyset$$

The "most probable" $D^{(c)} \in \mathbb{Q}$ is a Break Point of the Candidate Series $X_c(t)$. (Break Point: Meta Data)

(ii) If
$$\left(\bigcap_{m \in M^*} \mathbf{I}^{(m)}\right) \cap \Delta_c = \emptyset$$
 but $\left(\bigcup_{m \in M^*} \mathbf{I}^{(m)}\right) \cap \Delta_c \neq \emptyset$

No Decision.

(iii) If
$$\left(\bigcup_{m\in M^*} \mathbf{I}^{(m)}\right) \cap \Delta_c = \emptyset$$

The "most probable" $\stackrel{\wedge}{P}{}^{(m)}$ is a Break Point of the Candidate Series $X_c(t)$. (Break Point: is not Meta Data, but "undoubtful")

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	15

7. EVALUATION OF META DATA

(Meta Data: probable dates of break points)

THE QUALITY OF META DATA CAN BE VERIFIED BY STATISTICAL TESTS!!!

For example: the problem of Missing Meta Data??

In Practice: the statistical Test Results are often verified with the Meta Data.

BUT: the question may be turned round!

Examined series and their Meta Data

$$X_{j}(t), \quad \Delta_{j} = \left\{ 1 \le D_{1}^{(j)} < D_{2}^{(j)} < \dots < D_{K_{j}}^{(j)} < n \right\} \qquad (j = 1, 2, \dots, N)$$

<u>Candidate series and its Meta Data:</u> $X_c(t)$, Δ_c $c \in \{1, 2, ..., N\}$

<u>Optimal Difference Series belonging to the subset</u> $R_c^{(m)} \subseteq R_c$:

$$Z_{c}^{(m)}(t) = X_{c}(t) - \sum_{i \in R_{c}^{(m)}} w_{i} \cdot X_{i}(t) = \sum_{i \in R_{c}^{(m)}} w_{i} \cdot \left(X_{c}(t) - X_{i}(t)\right) = \sum_{i \in R_{c}^{(m)}} w_{i} \cdot Z_{ci}(t)$$

<u>Transformation of Difference Series</u> $Z_{ci}(t)$

 $\Delta_{c \vee i} = \Delta_c \bigcup \Delta_i = \left\{ 1 \le D_1^{(c \vee i)} < D_1^{(c \vee i)} < \dots < D_{K_{c \vee i}}^{(c \vee i)} < n \right\}$

$$\widetilde{Z}_{ci}(t) = \begin{cases} Z_{ci}(t) - \overline{Z}_{ci}[1, D_1^{(c \lor i)}] & , \text{if } 1 \le t \le D_1^{(c \lor i)} \\ Z_{ci}(t) - \overline{Z}_{ci}(D_{k-1}^{(c \lor i)}, D_k^{(c \lor i)}] & , \text{if } D_{k-1}^{(c \lor i)} < t \le D_k^{(c \lor i)} & (k = 2, ..., K_{c \lor i}) \\ Z_{ci}(t) - \overline{Z}_{ci}(D_{K_{c \lor i}}^{(c \lor i)}, n] & , \text{if } D_{K_{c \lor i}}^{(c \lor i)} < t \le n \end{cases}$$

 $\overline{Z}_{ci}\langle a,b\rangle$: average of $Z_{ci}(t)$ above the interval $\langle a,b\rangle$.

<u>Transformed Optimal Difference Series belonging to the subset</u> $R_c^{(m)} \subseteq R_c$: $\widetilde{Z}_c^{(m)}(t) = \sum_{i \in R_c^{(m)}} w_i \cdot \widetilde{Z}_{ci}(t)$ $(m = 1, ..., 2^{|R_c|} - 1)$

are homogeneous if the inhomogeneities can be explained by the Meta Data!

EVALUATION OF META DATA: Based on the Test Statistics (TS) belonging to the Transformed Optimal Difference Series $\widetilde{Z}_{c}^{(m)}(t)$.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	16

8. SEASONAL APPLICATION OF MASH (SAM)

<u>Monthly difference series</u>: $Z^{(k)}(t)$ (k = 1, 2, ..., K)

Expectations and Variances: $E(Z^{(k)}(t)) = IH^{(k)}(t), \quad V(Z^{(k)})$

<u>Seasonal mean difference series</u>: $\overline{Z}(t) = \frac{1}{K} \sum_{k=1}^{K} Z^{(k)}(t)$

Expectation and Variance: $E(\overline{Z}(t)) = \overline{IH}(t) = \frac{1}{K} \sum_{k=1}^{K} IH^{(k)}(t), \quad V(\overline{Z})$

The test results after the Homogenization of monthly series

H₀: $IH^{(k)}(t) = 0$ (k = 1,2,...,K) can be accepted.

BUT! (sometimes) $H_0: \overline{IH}(t) = 0$ can not be accepted!

The reason of the problem

The efficiency of test depends on the signal to noise ratio, and according to the test results

$$\mathbf{R}(\overline{Z}(t)) = \frac{\left|\overline{IH}(t)\right|}{\sqrt{\mathbf{V}(\overline{Z})}} > \mathbf{R}(Z^{(k)}(t)) = \frac{\left|IH^{(k)}(t)\right|}{\sqrt{\mathbf{V}(Z^{(k)})}} \approx 0 \qquad (k = 1, 2, \dots, K),$$

as a consequence of the general inequality: $V(\overline{Z}) < V(Z^{(k)})$ (k = 1, 2, ..., K)

Deviance series and ratios

$$Z^{(k)}(t) - \overline{Z}(t) , \quad \mathbf{R} \Big(Z^{(k)}(t) - \overline{Z}(t) \Big) = \frac{\Big| I H^{(k)}(t) - \overline{IH}(t) \Big|}{\sqrt{\mathbf{V}(Z^{(k)} - \overline{Z})}} \qquad (k = 1, 2, \dots, K)$$

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	17

<u>Lemma 1</u>

If $R(\overline{Z}(t)) > R(Z^{(k)}(t))$ (k = 1,2,...,K), then

$$\overline{\mathbb{R}}(Z(t) - \overline{Z}(t)) = \frac{1}{K} \sum_{k=1}^{K} \mathbb{R}(Z^{(k)}(t) - \overline{Z}(t)) \le \max_{k} \left\{ \mathbb{R}(Z^{(k)}(t)) \right\} \cdot \sqrt{\frac{\overline{\mathbb{V}}(Z - \overline{Z})}{\overline{\mathbb{V}}_{\mathrm{H}}(Z - \overline{Z})}}$$

where

 $\overline{V}(Z-\overline{Z})$: arithmetic mean of the variances $V(Z^{(k)}-\overline{Z})$ (k = 1,2,...,K), $\overline{V}_{H}(Z-\overline{Z})$: harmonic mean of the variances $V(Z^{(k)}-\overline{Z})$ (k = 1,2,...,K)

Consequently if $R(\overline{Z}(t)) > R(Z^{(k)}(t)) \approx 0$ (k = 1, 2, ..., K), then the ratios $R(Z^{(k)}(t) - \overline{Z}(t))$ (k = 1, 2, ..., K) are probably near to 0.

Test of Hypothesis

$$\mathbf{H}_{0}: \ \mathbf{R}\left(Z^{(k)}(t) - \overline{Z}(t)\right) \equiv 0 \quad \left(\iff IH^{(k)}(t) \equiv \overline{IH}(t) \right) \quad \left(k = 1, 2, \dots, K\right)$$

The test of hypothesis is based on the examination of the deviance series $Z^{(k)}(t) - \overline{Z}(t)$ (k = 1, 2, ..., K).

If H₀ can be accepted, then

$$\overline{\mathsf{R}}\Big(Z(t) - \overline{IH}(t)\Big) = \frac{1}{K} \sum_{k=1}^{K} \mathsf{R}\Big(Z^{(k)}(t) - \overline{IH}(t)\Big) \approx 0$$

as a consequence of the following lemma.

Lemma 2

$$\overline{\mathbb{R}}\left(Z(t) - \overline{IH}(t)\right) \le \max_{k} \left\{ \mathbb{R}\left(Z^{(k)}(t) - \overline{Z}(t)\right) \right\} \cdot \sqrt{\frac{\overline{\mathbb{V}}(Z)}{\overline{\mathbb{V}}_{\mathrm{H}}(Z)}}$$

where

 $\overline{V}(Z)$: arithmetic mean of the variances $V(Z^{(k)})$ (k = 1, 2, ..., K),

 $\overline{V}_{H}(Z)$: harmonic mean of the variances $V(Z^{(k)})$ (k = 1, 2, ..., K).

Consequently the ratios

$$\mathbf{R}\left(Z^{(k)}(t) - \overline{IH}(t)\right) \qquad \left(k = 1, 2, \dots, K\right)$$

are probably near to 0, i.e. the monthly inhomogeneities $IH^{(k)}(t)$ (k = 1, 2, ..., K) can be estimated with the estimation of the seasonal inhomogeneity $\overline{IH}(t)$.

9. VERIFICATION OF HOMOGENIZATION

9.1 Additive Model (for example temperature)

Original Series

 $\begin{aligned} X_{O,j}(t) &= C_j(t) + IH_j(t) + \varepsilon_j(t) & (j = 1, 2, \dots, N; t = 1, 2, \dots, n) \\ C: \text{ climate change; } IH: \text{ inhomogeneity, } \varepsilon: \text{ noise} \end{aligned}$

Estimated Inhomogeneity Series $I\hat{H}_{j}(t)$ Homogenized Series $X_{H,j}(t) = X_{O,j}(t) - I\hat{H}_{j}(t)$ Residual Inhomogeneity Series $IH_{res,j}(t) = IH_{j}(t) - I\hat{H}_{j}(t)$

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	19

Optimal Interpolation of Series

Interpolation of Original Series: $\hat{X}_{O,j}(t) = w_0 + \sum_{i \in R_j} w_i \cdot X_{O,i}(t)$, where R_j is the reference index set, $\sum_{i \in R_j} w_i = 1$ and $ERR = E\left(\left(X_{O,j}(t) - \hat{X}_{O,j}(t)\right)^2\right) = \min_{w_0,w_i}$. Interpolation of Homogenized Series: $\hat{X}_{H,j}(t) = w_0 + \sum_{i \in R_j} w_i \cdot X_{H,i}(t)$, where $\sum_{i \in R_j} w_i = 1$ and $ERR = E\left(\left(X_{H,j}(t) - \hat{X}_{H,j}(t)\right)^2\right) = \min_{w_0,w_i}$.

<u>Regression of $I\hat{H}_{j}(t)$ by Meta Data (probable dates of break points)</u>

 $\begin{aligned} \text{Meta Data:} \quad & \Delta_{j} = \left\{ 1 \leq D_{1}^{(j)} < D_{2}^{(j)} < \dots < D_{K_{j}}^{(j)} < n \right\} \\ & I\hat{H}_{Mreg,j}(t) = \begin{cases} \left(\overline{I\hat{H}_{j}}\right)_{A} [1, D_{1}^{(j)}] & \text{, if } 1 \leq t \leq D_{1}^{(j)} \\ \left(\overline{I\hat{H}_{j}}\right)_{A} (D_{k-1}^{(j)}, D_{k}^{(j)}] & \text{, if } D_{k-1}^{(j)} < t \leq D_{k}^{(j)} \ (k = 2, \dots, K_{j}) \\ \left(\overline{I\hat{H}_{j}}\right)_{A} (D_{K_{j}}^{(j)}, n] & \text{, if } D_{K_{j}}^{(j)} < t \leq n \end{aligned}$

 $\left(\overline{I\hat{H}_{j}}\right)_{A}\langle a,b\rangle$: arithmetic mean of $I\hat{H}_{j}(t)$ above the interval $\langle a,b\rangle$.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	20

9.2 Multiplicative Model (for example monthly or seasonal precipitation)

Original Series

 $X_{O,j}^{*}(t) = C_{j}^{*}(t) \cdot IH_{j}^{*}(t) \cdot \varepsilon_{j}^{*}(t) \qquad (j = 1, 2, \dots, N; t = 1, 2, \dots, n)$ $C^{*}: \text{ climate change; } IH^{*}: \text{ inhomogeneity, } \varepsilon^{*}: \text{ noise}$

Logarithmization for Additive Model

 $X_{O,j}(t) = C_j(t) + IH_j(t) + \varepsilon_j(t) \qquad (j = 1, 2, ..., N; t = 1, 2, ..., n)$

where

$$X_{O,j}(t) = \ln X_{O,j}^{*}(t) , \quad C_{i}(t) = \ln C_{j}^{*}(t) , \quad IH_{j}(t) = \ln IH_{j}^{*}(t) , \quad \varepsilon_{j}(t) = \ln \varepsilon_{j}^{*}(t)$$

Problem

If $X_{O,j}^{*}(t)$ values are near or equal to 0. This problem can be solved by a Transformation Procedure which increases slightly the little values. Consequently the Multiplicative Model can be transformed into the Additive One.

Estimated Inhomogeneity Series

 $I\hat{H}_{j}^{*}(t) (> 0)$, $I\hat{H}_{j}(t) = \ln I\hat{H}_{j}^{*}(t)$

Homogenized Series

$$X_{H,j}^{*}(t) = \frac{X_{O,j}^{*}(t)}{I\hat{H}_{j}^{*}(t)} , \qquad X_{H,j}(t) = \ln X_{H,j}^{*}(t) = X_{O,j}(t) - I\hat{H}_{j}(t)$$

Residual Inhomogeneity Series

$$IH_{res,j}^{*}(t) = \frac{IH_{j}^{*}(t)}{I\hat{H}_{j}^{*}(t)} , \qquad IH_{res,j}(t) = \ln IH_{res,j}^{*}(t) = IH_{j}(t) - I\hat{H}_{j}(t)$$

'Optimal' Interpolation (multiplicative)

Interpolation of Original Series: $\hat{X}_{O,j}^{*}(t) = \exp(\hat{X}_{O,j}(t)) = e^{w_0} \cdot \prod_{i \in R_j} (X_{O,i}^{*}(t))^{w_i}$ where $\hat{X}_{O,j}(t)$ is the optimally interpolated series of $X_{O,j}(t)$.

Interpolation of Homogenized Series: $\hat{X}_{H,j}^{*}(t) = \exp(\hat{X}_{H,j}(t)) = e^{w_0} \cdot \prod_{i \in R_j} (X_{H,i}^{*}(t))^{w_i}$ where

 $\hat{X}_{H,j}(t)$ is the optimally interpolated series of $X_{H,j}(t)$.

<u>Regression of</u> $I\hat{H}_{j}^{*}(t)$ by Meta Data (probable dates of break points)

Meta Data: $\Delta_j = \left\{ 1 \le D_1^{(j)} < D_2^{(j)} < \dots < D_{K_j}^{(j)} < n \right\}$

$$\begin{split} & I\hat{H}_{Mreg,j}^{*}(t) = \exp\left(I\hat{H}_{Mreg,j}(t)\right) = \\ & = \begin{cases} \left(\overline{I\hat{H}_{j}}^{*}\right)_{G}^{*}[1,D_{1}^{(j)}] & , \text{if } 1 \leq t \leq D_{1}^{(j)} \\ \left(\overline{I\hat{H}_{j}}^{*}\right)_{G}^{*}(D_{k-1}^{(j)},D_{k}^{(j)}] & , \text{if } D_{k-1}^{(j)} < t \leq D_{k}^{(j)} \ (k=2,..,K_{j}) \\ \left(\overline{I\hat{H}_{j}}^{*}\right)_{G}^{*}(D_{K_{j}}^{(j)},n] & , \text{if } D_{K_{j}}^{(j)} < t \leq n \end{cases}$$

 $\left(\overline{I\hat{H}_{j}}\right)_{G}\langle a,b\rangle$: geometric mean of $I\hat{H}_{j}(t)$ above the interval $\langle a,b\rangle$.

9.3 Series for Verification Procedure

` <i>!</i>	Additive' Series	'Multiplicative' Series
Original Series:	$X_o(t)$	$X_O^*(t) = \exp(X_O(t))$
Estimated Inhomogeneity :	$I\hat{H}(t)$	$I\hat{H}^{*}(t) = \exp\left(I\hat{H}(t)\right)$
Homogenized Series:	$X_H(t)$	$X_{H}^{*}(t) = \exp(X_{H}(t))$
Residual Inhom. (unknown):	$IH_{res}(t)$	$IH_{res}^{*}(t) = \exp(IH_{res}(t))$
Opt. Int. of Orig. Series:	$\hat{X}_o(t)$	$\hat{X}_{O}^{*}(t) = \exp\left(\hat{X}_{O}(t)\right)$
Opt. Int. of Hom. Series:	$\hat{X}_{H}(t)$	$\hat{X}_{H}^{*}(t) = \exp\left(\hat{X}_{H}(t)\right)$
Regr. of Est. Inh. by Meta:	$\hat{H}_{Mreg,j}(t)$	$I\hat{H}_{Mreg,j}^{*}(t) = \exp\left(I\hat{H}_{Mreg,j}(t)\right)$

At the additive model we have additive series only, while in case of the multiplicative model we have additive and multiplicative series alike.

9.4 Basic Statistical Functions for Verification Procedure

Statistical Functions for 'Additive' Series

Deviaton of series x(t), y(t) (t = 1, 2, ..., n): $D(x, y) = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (x(t) - y(t))^2}$ Standard Deviaton of series x(t) (t = 1, 2, ..., n): $S(x) = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (x(t) - \overline{x(t)}_A)^2}$ Deviation Error of estimation $\hat{x}(t)$ (t = 1, 2, ..., n): $ERR(x, \hat{x}) = D(x, \hat{x})$ Statistical Functions for 'Multiplicative' Series

Fluctuation of series x(t)(>0), y(t)(>0) (t = 1, 2, ..., n): $F(x, y) = \left(\prod_{t=1}^{n} \max\left(\frac{x(t)}{y(t)}, \frac{y(t)}{x(t)}\right)\right)^{\frac{1}{n}}$

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	22	

Standard Fluctuation of series x(t) (> 0) (t = 1, 2, ..., n): $SF(x) = \left(\prod_{t=1}^{n} \max\left(\frac{x(t)}{\overline{x}_{G}}, \frac{\overline{x}_{G}}{x(t)}\right)\right)^{\frac{1}{n}}$

(*G*: geometric mean) Fluctuation Error of estimation $\hat{x}(t) (> 0) (t = 1, 2, ..., n)$: $FERR(x, \hat{x}) = F(x, \hat{x})$

<u>Lemma</u>

Connection between the additive and multiplicative statistical functions:

 $SF(y) \approx SF(x) \frac{S(\ln y)}{S(\ln x)}$ and $F(x, y) \approx SF(x) \frac{D(\ln x, \ln y)}{S(\ln x)}$

9.5 The Verification Statistics

For both model the calculation of verification statistics is based on the 'additive' series, but in case of multiplicative model the verification statistics can be interpreted for the 'multiplicative' series too according to the lemma.

I. Test Statistics for Series Inhomogeneity

I.1. Test Statistic After Homogenization (TSA)

Examined series: $Z_H(t) = X_H(t) - \hat{X}_H(t)$

I.2. Test Statistic Before Homogenization (TSB)

Examined series: $Z_o(t) = X_o(t) - \hat{X}_o(t)$

I.3. Statistic for Estimated Inhomogeneity (IS)

Examined series: $I\hat{H}(t)$

The homogenization can be considered is successful if the Test Statistic After Homogenization is little and the Statistic for Estimated Inhomogeneity is in accordance with the Test Statistic Before Homogenization.

II. Characterization of Inhomogeneity

II.1. Relative Estimated Inhomogeneity: $RI1 = \frac{S(I\hat{H})}{S(X_o)}$ Multiplicative interpretation: $SF(I\hat{H}^*) \approx SF(X_o^*)^{RII}$

II.2. Relative Modification of Series: $RI2 = \frac{D(X_o, X_H)}{S(X_o)}$ Multiplicative interpretation: $F(X_o^*, X_H^*) \approx SF(X_o^*)^{RI2}$

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	23

II.3. Lower Confidence Limit (RI3) for Relative Residual Inhomogeneity:

$$\mathbf{P}\left(\begin{array}{c} \underline{S(IH_{res})} \\ \overline{S(X_{H})} \ge \mathbf{RI3} \end{array}\right) \ge 1 - \text{ sig. level } (= 0.9, 0.95, 0.99)$$

Multiplicative interpretation:
$$\mathbf{P}\left(SF\left(IH_{res}^{*}\right) \ge SF\left(X_{H}^{*}\right)^{\mathbf{RI3}}\right) \ge 1 - \text{ sig. level}$$

III. Representativity of Station Network

$$\mathbf{RS} = 1 - \frac{ERR(X_H, \hat{X}_H)}{S(X_H)}$$

Multiplicative interpretation:

 $FERR(X_{H}^{*}, \hat{X}_{H}^{*}) \approx SF(X_{H}^{*})^{1-RS}$

IV. Test Statistic for Meta Data

Examined series: $Z_O(t) = X_O(t) - \hat{X}_O(t)$ with Meta Data.

V. Representativity of Meta Data

$$\mathbf{RM} = 1 - \frac{ERR(I\hat{H}, I\hat{H}_{Mreg})}{S(I\hat{H})}$$

Multiplicative interpretation: $FERR(I\hat{H}^*, I\hat{H}_{Mreg}^*) \approx SF(I\hat{H}^*)^{1-RM}$

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	24

CRITICAL VALUES FOR TEST STATISTICS (by Monte Carlo Method)

Significance level: 0.1

Length of series: critical value for the Test statistic of inhomogeneity

10:	15.902	;	20:	15.845	;	30:	16.160	;	40:	16.765;
50:	17.156	;	60:	17.697	;	70:	18.059	;	80:	18.369;
90:	18.655	;	100:	18.843	;	110:	19.008	;	120:	19.101;
130:	19.220	;	140:	19.397	;	150:	19.526	;	160:	19.609;
170:	19.678	;	180:	19.749	;	190:	19.789	;	200:	19.950

Significance level: 0.1

Length of series: critical value for the outliers Test statistic

10:	5.495	;	20:	5.530	;	30:	5.898	;	40:	6.126;
50:	6.330	;	60:	6.486	;	70:	6.613	;	80:	6.719;
90:	6.802	;	100:	6.914	;	110:	7.009	;	120:	7.089;
130:	7.145	;	140:	7.234	;	150:	7.294	;	160:	7.343;
170:	7.387	;	180:	7.434	;	190:	7.512	;	200:	7.558

Significance level: 0.05

Length of series: critical value for the Test statistic of inhomogeneity

10:	23.602	;	20:	20.924	;	30:	20.530	;	40:	20.574;
50:	20.861	;	60:	20.914	;	70:	21.313	;	80:	21.395;
90:	21.534	;	100:	21.599	;	110:	21.731	;	120:	21.760;
130:	21.933	;	140:	21.936	;	150 :	22.052	;	160:	22.063;
170:	22.078	;	180:	22.193	;	190:	22.288	;	200:	22.362

Significance level: 0.05

Length of series: critical value for the outliers Test statistic

10:	9.263	;	20:	7.445	;	30:	7.442	;	40:	7.582;
50:	7.710	;	60:	7.797	;	70:	7.901	;	80:	7.996;
90:	8.028	;	100:	8.076	;	110:	8.147	;	120:	8.202;
130:	8.295	;	140:	8.344	;	150:	8.403	;	160:	8.433;
170:	8.484	;	180:	8.518	;	190:	8.531	;	200:	8.607

Significance level: 0.01

Length of series: critical value for the Test statistic of inhomogeneity (over-estimated values)

10: 5	52.000	;	20:	37.000	;	30:	33.000	;	40:	32.000;
50: 3	31.000	;	60:	30.000	;	70:	30.000	;	80:	29.000;
<i>90</i> : 2	29.000	;	100:	29.000	;	110:	29.000	;	120:	28.000;
130: 2	28.000	;	140:	28.000	;	150:	28.000	;	160:	28.000;
170: 2	28.000	;	180:	28.000	;	190:	28.000	;	200:	28.000

Significance level: 0.01

Length	of series:	critical	value	for the	outliers	Tes	st statistic	(over	r-esti1	nated values)	
10:	32.000	; 2	0: 1	4.000	; 3	0:	12.000	;	40:	12.000;	

10.	52.000	'	20.	I4.000	'	50.	12.000	'	чU.	12.000,
50:	12.000	;	60:	12.000	;	70:	12.000	;	80:	11.000;
90:	11.000	;	100:	11.000	;	110:	11.000	;	120:	11.000;
130:	11.000	;	140:	11.000	;	150 :	11.000	;	160:	11.000;
170:	11.000	;	180:	11.000	;	190:	11.000	;	200:	11.000

<u>*Remark*</u>: The critical values are built in the program system.

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	25	

II. THE STRUCTURE OF PROGRAM SYSTEM

Main Directory MASHv3.03:

Directory MASHDAILY (See Page 56)

Directory MASHMONTHLY:

- Subdirectory COSTHOMEINPUT

- Subdirectory COSTHOMEOUTPUT

- Subdirectory SAM:

- Subdirectory **SAMPAR** (parametrization program)

- Main Program Files of SAM

- Subdirectory **SAMAUTO** (automatic homogenization programs)
- Subdirectory **SAMMISS** (data completion and QC programs)
- Subdirectory **SAMVERI** (verification program)
- Subdirectory **SAMMANU** ("manual" programs)
- Subdirectory **SAMEND** (finishing program)
- Subdirectory **SAMSUB** (do not use it including "subroutines")
- Subdirectory MASH:
 - Subdirectory **MASHPAR** (parametrization program)

- Main Program Files of MASH

- Subdirectory **MASHAUTO** (automatic homogenization program)
- Subdirectory **MASHMANU** ("manual" programs)
- Subdirectory MASHEND (finishing program)
- Subdirectory **MASHSUB** (do not use it including "subroutines")

General Comments

Monthly, seasonal or annual time series can be homogenized by the program system.

The data series belonging to different stations are compared in the course of the procedure. The maximal number of the stations: 500 The maximal length of the time series: 200

In case of having monthly series for all the 12 months, the monthly, seasonal and annual series can be homogenized together by the main program files of the subdirectory SAM (Seasonal Application of MASH; see page 27).

In case of having only annual series, or monthly series belonging to a given month, or seasonal series belonging to a given season, the series can be homogenized by the main program files of subdirectory MASH (see page 23).

Depending on the climatic elements, additive (e.g. temperature) or multiplicative (e.g. precipitation) models are applied. The second case can be transformed into the first one by logarithmization. The problem of values being near to zero can be solved by a Transformation Procedure which increases slightly the little values.

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	27	

III. THE MASH SYSTEM

- Subdirectory MASH:

- Subdirectory MASHPAR (parametrization program)
- Main Program Files of MASH
- Subdirectory MASHAUTO (automatic homogenization program)
- Subdirectory MASHEND (finishing program)
- Subdirectory MASHMANU ("manual" programs)
- Subdirectory MASHSUB (don not use it including "subroutines")

MASH IN PRACTICE

I. Parametrization in Subdirectory MASH\MASHPAR

MASHPAR.BAT

Data File, Significance level (0.1, 0.05, 0.01), Table of Reference System OR Table of Filambda Station Coordinates, Table of META DATA

II. The Main Program Steps in Subdirectory MASH

1. Automatic filling of missing values (MASHMISS.BAT) It is obligatory in case of missing values! It can be repeated!

2. The further steps can be used optionally

MASHVERI.BAT: To verify the actual or the final stage of homogenization.

MASHGAME.BAT: An intensive examination for correction of one of the examined series in a playful way.

MASHCOR.BAT: Possibility for manual correction of examined series.

MASHDRAW.BAT: Graphic series.

MASHLIER.BAT: For automatic correction of outliers.

AUTOMATIC, ITERATIVE application of MASHGAME.BAT i.e.:

Running two Batch Files in Subdirectory MASH\MASHAUTO:

i, MAUTOPAR.BAT: Parametrization; input: number of iteration steps

ii, MASHAUTO.BAT: Examination, homogenization

Remark: During running of MASHAUTO.BAT the verification results are generated automatically in the files MASHVERI.RES, MASHVERO.RES.

(The steps (1 -2) can be repeated optionally!!!!!)

III. Finishing in Subdirectory MASHEND

The final results are saved in **MASHEND** by **MASHEND.BAT**

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	28

THE MAIN PROGRAM and I/O FILES of Subdirectory MASHPAR

<u>1. Executive File</u>

MASHPAR.BAT : Parametrization and a transformation procedure for the data which are near 0, in case of cumulative model.

<u>2. Input Files and Input Data</u>

Data File:

Format of Data File (maximal number of series: 500, maximal length of series: 200): row 1: names of series or stations (obligatory!) column 1: series of dates (I4) column i+1: series i. Data Format: additive model (for example temperature): F6.2 cumulative model: I6 (data must be nonnegative!) (for example precipitation, values multiplied by ten) Mark of Missing Values: additive model:999.99 ; cumulative model:999999 (For example: HUNTEMP.DAT) **Significance level:** 0.1 or 0.05 or 0.01

Table of Reference System: Indexes of reference series belonging to the candidate series. For example: HUNTEMP.REF

OR: Table of Filambda Station Coordinates: For example: HUNCOORD.PAR

Table of META DATA: Probable dates of the Break Points. For example: HUNMETA.DAT

3. Result Files written in Subdirectory MASH

SEE: Data and Result Files of Subdirectory MASH:

MASHPAR.PAR, MASHPAR2.PAR, MASHMETA.DAT, MASHDAT.SER, MASHMISS.SER, MASHINH.SER, MASHHOM.SER

4. Parameter Files

MASHPAR1.PAR, MASHPAR2.PAR

THE MAIN PROGRAM and I/O FILES of Subdirectory MASHEND

<u>1. Executive File</u>

MASHEND.BAT : Finishing and a retransformation procedure in case of cumulative model.

2. Result Files

MASHMISS.SER	: Original data series (with missing values).
MASHDAT.SER	: Original data series (with filled missing values).
MASHHOM.SER	: Homogenized data series.
MASHINH.SER	: Inhomogeneity series.

3. Parameter File: MASHPAR2.PAR

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	29

THE MAIN PROGRAM and I/O FILES of Subdirectory MASH

<u>1.1 Executive Files of MASH</u>

MASHMISS.BAT : Automatic filling of missing values.

MASHLIER.BAT : For automatic correction of outliers.

MASHGAME.BAT:

An intensive examination for correction of one of the examined series in a playful way.

MASHCOR.BAT : Possibility for manual correction of examined series.

MASHDRAW.BAT: Graphic series.

MASHVERI.BAT : Verification of Homogenization, evaluation of Meta Data

1.2 AUTOMATIC Homogenization Procedure in MASH\MASHAUTO:

i, MAUTOPAR.BAT: Parametrization; input: number of iteration steps

ii, MASHAUTO.BAT: Examination, homogenization

1.3 Executive Files of Subdirectory MASH\MASHMANU ("Manual" Program Files)

MASHSELR.BAT: Help for selection of reference series.

MASHEX1.BAT : To examine the optimal series belonging to the candidate series.

MASHEX2.BAT : To examine the optimal series system belonging to the candidate series.

MASHAUTC.BAT: Automatic correction of candidate series .

Remark: The "manual" program files (MASHSELR.BAT, MASHEX2.BAT, MASHAUTC.BAT) have been automatized. Their combined automatic version is the program file MASHGAME.BAT which is recommended to use instead of them.

2. Data and Result Files

MASHPAR.PAR : Parameters, Table of Reference System.

MASHMETA.DAT: Table of META DATA.

MASHMISS.SER : Original data series (with missing values).

MASHMISS.RES : Statistical results of filling missing values.

MASHDAT.SER : Original data series (with filled missing values).

MASHINH.SER : Inhomogeneity series.

MASHHOM.SER : Homogenized data series.

MASHEX1.RES : Statistical results: optimal difference series belonging to the candidate series and its detected inhomogeneities.

MASHEX1.SER : Result series: optimal difference series belonging to the candidate series and its inhomogeneity series.

MASHEX2.RES : Statistical results: optimal difference series system belonging to the candidate series and the detected inhomogeneities of the system elements.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	30

MASHEX2.SER : Result series: optimal difference series system belonging to the candidate series and the inhomogeneity series of the system elements.

MASHCOR.RES : Detected break points, outliers and shifts (additive model) or ratios (cumulative model).

MASHSELR.RES : Table for selection of reference series.

MASHVERI.RES : Result of Verification file MASHVERI.BAT .

MASHVERO.RES : Result of Verification file MASHVERI.BAT (ordered statistics).

3. Work and Parameter Files

MASHPAR2.PAR, MASHPRCR.PAR, MASHSTEP.PAR, MASHMETA.PAR, MASHEINH.SER,MASHAUTC.INP, MASHAUTC.IND, GAME1.PAR, GAME2.PAR, GAME3.PAR, GAME4.PAR, GAME5.PAR, GAME6.PAR

FILES of Subdirectory MASHSUB ("Subroutines")

GAMEAUTA.EXE, GAMEAUTO.EXE, GAMESELA.EXE, GAMESELO.EXE, MASHAUTA.EXE, MASHAUTC.EXE, MASHAUTG.EXE, MASHAUTO.EXE, MASHCOR.EXE, MASHDRAW.EXE, MASHEX1.EXE, MASHEX2.EXE, MASHEX2A.EXE, MASHEX2G.EXE, MASHEX2O.EXE, MASHHELP.EXE, MASHHELX.EXE, MASHINV.EXE, MASHMISS.EXE, MASHPAR.EXE, MASHSELA.EXE, MASHSELG.EXE, MASHSELO.EXE, MASHSELR.EXE, MASHSETA.EXE, MASHSETG.EXE, METAHELP.EXE, MASHTRAN.EXE, MASHVERI.EXE, METAVERI.EXE

IV. THE SAM SYSTEM

The Suggested Step by Step Procedure:

- 0. Examination of the annual series. The detected break points can be useful information for the further steps 1-3.
- 1. Examination of the monthly series for all the 12 months. Homogenization of the monthly series.
- 2. Examination of the seasonal series for residual inhomogeneity. Homogenization of the monthly series.
- 3. Examination of the annual series for residual inhomogeneity. Homogenization of the monthly series.

THE STRUCTURE OF SAM SYSTEM

- Subdirectory SAM:

- Subdirectory **SAMPAR** (parametrization program)
- Subdirectory MASH (examination of annual series)
- Main Program Files of SAM
- Subdirectory SAMMISS (data completion and QC programs)
- Subdirectory SAMVERI (verification programs)
- Subdirectory **SAMAUTO** (automatic homogenization programs)
- Subdirectory **SAMMANU** ("manual" programs)
- Subdirectory **SAMEND** (finishing program)
- Subdirectory **SAMSUB** (don not use it including "subroutines")

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	32

SAM IN PRACTICE

I. Parametrization in Subdirectory SAM\SAMPAR (SAMPAR.BAT)

Data Files, Significance level (0.1, 0.05, 0.01), Table of Reference System OR Table of Filambda Station Coordinates, Table of META DATA

Remark

In directory MASHMONTHLY\COSTHOMEINPUT:

input files in format of COST Action ES0601 (HOME) can be converted. Possibility for making monthly input files in MASH Format by **COSTHOMEINPUT.BAT** Input: all.txt files according to COSTHOME Format

Output: $m\{j\}$. (j=1,...,12) (data files) and filastat.par (filambda station coordinates), input.par

II. Examination of annual series in Subdirectory SAM\MASH:

(the detected break points can be useful "metadata" information for the monthly series)

- Automatic parametrization in subdirectory MASH\MASHPAR by MASHPARSAM.BAT Input automatically: annual series with missing values

(Remark: **SAMMISSOUT.BAT** may be used before in subirectory **SAM\SAMMISS** for the purpose of QC of monthly values)

- Homogenization of annual series in directory MASH (page 23)
- Finishing of annual examination in subdirectory **MASH\MASHEND:** annual metadata for main directory **SAM** by **MASHENDSAM.BAT** (Back to main directory SAM)

III. The Main Program Possibilities in Directory SAM

DATA COMPLETION for all the 12 Months together:

(Automatic version of MASHMISS.BAT. It can be repeated!) Running Batch File **SAMMISS.BAT in Subirectory SAM\SAMMISS.**

DATA COMPLETION and OUTLIER DETECTION for all the 12 Months together: (It can be repeated!)

Running Batch File **SAMMISSOUT.BAT in Subirectory SAM\SAMMISS.** (SAMMISS.BAT or SAMMISSOUT.BAT is obligatory in case of having missing values!)

VERIFICATION PROCEDURE for all Monthly, Seasonal and Annual Series:

(Automatic version of MASHVERI.BAT. It can be repeated!) Running Batch File **SAMVERI.BAT in Subirectory SAM\SAMVERI** Output Files in Directory SAM: **V**{**j**}. (j=1,...,17) and **VERISUM** (summary)

AUTOMATIC HOMOGENIZATION for all the 12 Months in SAM\SAMAUTO:

Running two batch files, Sautopar.. (parametrization) and Samauto..(homogenization): a, Strict decision rule (detected breaks: only metadata)

Running SAUTOPAR12S.BAT and SAMAUTO12.BAT

b, Basic decision rule (detected breaks: meta data or "undoubtful" breaks)

Running SAUTOPAR12B.BAT and SAMAUTO12.BAT

c, Light decision rule (detected breaks: arbitrary breaks)

Running SAUTOPAR12L.BAT and SAMAUTO12.BAT

The steps a,b,c, together: SAUTOPAR12SBL.BAT and SAMAUTO12.BAT

Verification results are generated automatically in the files $V{j}$. (j=1,...,12).

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	33

EXAMINATIONS OF CHOSEN MONTHLY, SEASONAL SERIES

1. Taking the chosen monthly or seasonal series In (SAMIN.BAT)

2. The further steps can be used optionally

MASHMISS.BAT : Automatic filling of missing values.

MASHVERI.BAT : To verify the actual or the final stage of homogenization.

MASHGAME.BAT: An intensive examination for correction of one of the examined series in a playful way.

MASHCOR.BAT: Possibility for manual correction of examined series.

MASHDRAW.BAT: Graphic series.

MASHLIER.BAT: For automatic correction of outliers.

AUTOMATIC, ITERATIVE application of MASHGAME.BAT i.e.:

Running two Batch Files in Subdirectory SAM\SAMAUTO: i, SAUTOPAR.BAT: Parametrization; input: number of iteration steps ii, SAMAUTO.BAT: Examination, homogenization (possible decision rules: strict, basic, light)

AUTOMATIC PROCEDURE in strict, basic and light ways together: Running Batch Files in Subdirectory SAM\SAMAUTO: i, SAUTOPARSBL.BAT: Parametrization; input: number of iteration steps ii, SAMAUTO.BAT: Examination, homogenization

Remark: During running of SAMAUTO.BAT the verification results are generated automatically in the files MASHVERI.RES, MASHVERO.RES.

3. The further step can be used in case of Seasonal Series

SAMTEST.BAT : Test for comparison of the inhomogeneities between the seasonal series and the appropriate monthly series, moreover procedure for selecting stations which have different inhomogeneities between the seasonal series and the appropriate monthly series.

4. Taking the chosen monthly or seasonal series Out (SAMOUT.BAT)

(The steps (1 - 4) can be repeated optionally!!!!!)

IV. Finishing in Subdirectory SAMEND

The final results are saved in SAMEND by SAMEND.BAT

Remark In directory MASHMONTHLY\COSTHOMEOUTPUT: Posssibility for making output files in COSTHOME Format by COSTHOMEOUTPUT.BAT Input: from SAMEND and COSTHOMEINPUT Output: all .txt files according to COSTHOME Format

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	34

THE MAIN PROGRAM and I/O FILES of Subdirectory SAMPAR

<u>1. Executive File</u>

SAMPAR.BAT: Parametrization and a transformation procedure for the data which are near 0, in case of cumulative model.

<u>2. Input Files and Input Data</u>

12 Data Files:

 $\mathbf{m}{\mathbf{j}}$ (j=1,...,12): original monthly series

Format of Data Files (maximal number of stations: 500, maximal length of series: 200): row 1: station names (obligatory!) column 1: series of dates (I4) column i+1: series i. Data Format: additive model (for example temperature): F6.2 cumulative model: I6 (data must be nonnegative!) (for example precipitation, values multiplied by ten) Mark of Missing Values: additive model:999.99 cumulative model:999999

Significance level: 0.1 or 0.05 or 0.01

Table of Reference System:

Indexes of reference series belonging to the candidate series. For example: HUNTEMP.REF

OR: Table of Filambda Station Coordinates:

For example: HUNCOORD.PAR

Table of META DATA:

Probable dates of the Break Points. For example: HUNMETA.DAT

3. Result Files written in Subdirectory SAM

SEE Data and Result Files of Subdirectory SAM:

 $m{j}, m{j}h, m{j}i, m{j}c$ (j=1,....,12)

 $s{j}, s{j}h, s{j}i, s{j}ei, s{j}c$ (j=1, 2, 3, 4)

year, yearh, yeari, yearei, yearc

SAMPAR.PAR, MASHPAR.PAR, MASHMETA.DAT

4. Parameter Files

SAMPAR4.PAR, SAMPAR5.PAR, SAMPAR6.PAR

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	35

THE MAIN PROGRAM and I/O FILES of Subdirectory SAMEND

<u>1. Executive File</u>

SAMEND.BAT : Finishing and a retransformation procedure in case of cumulative model.

2. Result Files

 $\mathbf{m}{\mathbf{j}}$ (j=1,...,12): original monthly series (with filled missing values). $s{j}$ (j=1, 2, 3, 4): original seasonal series (with filled missing values). (winter = $\{1, 2, 12\}$, spring = $\{3, 4, 5\}$, summer = $\{6, 7, 8\}$, autumn = $\{9, 10, 11\}$). year : original annual series (with filled missing values). $\mathbf{m}{\mathbf{j}}\mathbf{h}$ (j=1,...,12): homogenized monthly series. $s{j}h$ (j=1, 2, 3, 4): homogenized seasonal series (based on homogenized monthly series). yearh : homogenized annual series (based on homogenized monthly series). \mathbf{m} **ii** (i=1,...,12): estimated inhomogeneity series for months. $s{j}i$ (j=1, 2, 3, 4): estimated inhomogeneity series for seasons. yeari : estimated inhomogeneity series for year. $s{j}ei$ (j=1, 2, 3, 4): estimated "expectation" of inhomogeneity series for seasons. yearei : estimated "expectation" of inhomogeneity series for year. $\mathbf{m}{\mathbf{j}}\mathbf{c}$ (j=1,...,12): break points and shifts (add. m.) or ratios (cum. m.) for months. $s_{j}c_{j}c_{j}$ (j=1, 2, 3, 4): break points and shifts (add. m.) or ratios (cum. m.) for seasons. yearc : break points and shifts (add. m.) or ratios (cum. m.) for year. $v{j}$. (j=1,...,17): verification statistics for the months and seasons

(winter: 13 spring: 14 summer: 15 autumn: 16 year: 17)

verisum: summary of verification statistics

3. Parameter File

SAMPAR5.PAR

THE MAIN PROGRAM and I/O FILES of Subdirectory SAM

1. Executive Files

<u>1.1 Special Executive Files of SAM System</u>

SAMIN.BAT : Taking the chosen monthly or seasonal series In.

SAMOUT.BAT : Taking the chosen monthly or seasonal series Out.

SAMTEST.BAT: Test for comparison of the inhomogeneities between the seasonal series and the appropriate monthly series. Moreover, procedure for selecting stations that have different inhomogeneities between the seasonal series and the appropriate monthly series.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	36

1.2 Executive Files of MASH System

MASHMISS.BAT : Automatic filling of missing values.

MASHLIER.BAT : For automatic correction of outliers.

MASHGAME.BAT:

An intensive examination for correction of one of the examined series in a playful way.

MASHCOR.BAT : Possibility for manual correction of examined series.

MASHDRAW.BAT: Graphic series.

MASHVERI.BAT : Verification of Homogenization, evaluation of Meta Data.

1.3 Executive Files in SAM\SAMMISS

SAMMISS.BAT: Data completion for all the 12 months together.

SAMMISSOUT.BAT: Data completion and outlier detection for all the 12 months together.

1.3 Executive Files in SAM\SAMVERI

SAMVERI.BAT: Verification Procedure for all monthly, seasonal and annual series:

1.4 Automatic Homogenization Procedures in SAM\SAMAUTO

Running two batch files, Sautopar.. (parametrization) and Samauto.. (homogenization):

AUTOMATIC HOMOGENIZATION for all the 12 Months

 a, Strict decision rule (detected breaks: only metadata) Running SAUTOPAR12S.BAT and SAMAUTO12.BAT
 b, Basic decision rule (detected breaks: meta data or "undoubtful" breaks) Running SAUTOPAR12B.BAT and SAMAUTO12.BAT
 c, Light decision rule (detected breaks: arbitrary breaks) Running SAUTOPAR12L.BAT and SAMAUTO12.BAT
 The steps a,b,c, together: SAUTOPAR12SBL.BAT and SAMAUTO12.BAT

AUTOMATIC HOMOGENIZATION for a chosen Month, Season or Year The operational way (strict, basic, light) may be chosen: Running SAUTOPAR.BAT and SAMAUTO.BAT The operational ways (strict, basic, light) together: Running SAUTOPARSBL.BAT and SAMAUTO.BAT

<u>1.5 Executive Files of Subdirectory SAM\SAMMANU ("Manual" Program Files)</u></u>

MASHSELR.BAT: Help for selection of reference series.

MASHEX1.BAT : To examine the optimal series belonging to the candidate series.

MASHEX2.BAT : To examine the optimal series system belonging to the candidate series.

MASHAUTC.BAT: Automatic correction of candidate series .

Remark: The "manual" program files (MASHSELR.BAT, MASHEX2.BAT, MASHAUTC.BAT) have been automatized. Their combined automatic version is the program file MASHGAME.BAT which is recommended to use instead of them. **2. Data and Result Files**

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	37

2.1 Special Data and Result Files of SAM System

 $m{j}$ (j=1,...,12): original monthly series

 $s{j}$ (j=1, 2, 3, 4): original seasonal series

(winter = $\{1, 2, 12\}$, spring = $\{3, 4, 5\}$, summer = $\{6, 7, 8\}$, autumn = $\{9, 10, 11\}$).

year : original annual series.

 $\mathbf{m}{\mathbf{j}}\mathbf{h}$ (j=1,...,12): homogenized monthly series.

 $s{j}h$ (j=1, 2, 3, 4): homogenized seasonal series (based on homogenized monthly series).

yearh : homogenized annual series (based on homogenized monthly series).

 $m\{j\}i$ (j=1,...,12): estimated inhomogeneity series for months.

 $s{j}i$ (j=1, 2, 3, 4): estimated inhomogeneity series for seasons.

yeari : estimated inhomogeneity series for year.

 $s{j}ei$ (j=1, 2, 3, 4): estimated "expectation" of inhomogeneity series for seasons.

yearei : estimated "expectation" of inhomogeneity series for year.

 $m\{j\}c$ (j=1,...,12): break points and shifts (add. m.) or ratios (cum. m.) for months.

 $s{j}c$ (j=1, 2, 3, 4): break points and shifts (add. m.) or ratios (cum. m.) for seasons.

yearc : break points and shifts (add. m.) or ratios (cum. m.) for year.

 $v{j}$. (j=1,...,17): verification statistics for the months and seasons

(winter: 13 spring: 14 summer: 15 autumn: 16 year: 17)

verisum: summary of verification statistics

SAMPAR.PAR : Parameters, Table of Reference System.

SAMTEST.RES: Output of SAMTEST.BAT.

2.2 Data and Result Files of MASH System

MASHPAR.PAR : Parameters, Table of Reference System.

MASHMETA.DAT: Table of META DATA.

MASHMISS.SER : Original data series (with missing values).

MASHMISS.RES : Statistical results of filling missing values.

MASHDAT.SER : Original data series (with filled missing values).

MASHINH.SER : Inhomogeneity series.

MASHHOM.SER : Homogenized data series.

MASHEX1.RES : Statistical results: optimal difference series belonging to the candidate series and its detected inhomogeneities.

MASHEX1.SER : Result series: optimal difference series belonging to the candidate series and its inhomogeneity series.

MASHEX2.RES : Statistical results: optimal difference series system belonging to the candidate series and the detected inhomogeneities of the system elements.

MASHEX2.SER : Result series: optimal difference series system belonging to the candidate series and the inhomogeneity series of the system elements.

MASHCOR.RES : Detected break points, outliers and shifts (additive model)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	38

or ratios (cumulative model).

MASHSELR.RES : Table for selection of reference series.

MASHVERI.RES: Result of Verification file MASHVERI.BAT.

MASHVERO.RES : Result of Verification file MASHVERI.BAT (ordered statistics).

<u>3. Work and Parameter Files</u>

3.1 Special Work and Parameter Files of SAM System

SAMPAR2.PAR, SAMPAR3.PAR, SAMPAR4.PAR, SAMPAR5.PAR, SAMPRCR.PAR, SAMTEST.PAR, SAMORINH.SER, SAMTESTD.SER, SAMTESTI.SER, SAMTIMER.PAR

3.2 Work and Parameter Files of MASH System

MASHPAR2.PAR, MASHPRCR.PAR, MASHSTEP.PAR, MASHMETA.PAR, MASHEINH.SER,MASHAUTC.INP, MASHAUTC.IND, GAME1.PAR, GAME2.PAR, GAME3.PAR, GAME4.PAR, GAME5.PAR, GAME6.PAR

FILES of Subdirectory SAMSUB ("Subroutines")

SAMHELP1.EXE, SAMHELP2.EXE, SAMHELP3.EXE, SAMIN1.EXE, SAMIN2.EXE, SAMINV.EXE, SAMMISS.EXE, SAMOUT1.EXE, SAMOUT2.EXE, SAMOUT3.EXE, SAMPAR.EXE, SAMTESTC.EXE, SAMTESTS.EXE, SAMTEST1.EXE, SAMTEST2.EXE, SAMTRAN.EXE

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	39

V. EXAMPLE FOR APPLICATION OF MASH SYSTEM

Data File: HUNTEMP.DAT

Examined Series: Hungarian annual mean temperature series (1901-1999).

Examined Stations:
1. Budapest (bp), 2. Debrecen (de), 3. Kecskemét (ke), 4. Miskolc (mi), 5. Mosonmagyaróvár (mo),
6. Nyíregyháza (ny), 7. Pécs (pe), 8. Sopron (sr), 9. Szeged (se), 10. Szombathely (so)

Table of Reference System: HUNTEMP.REF

```
TABLE OF REFERENCE SYSTEM (two rows belong to each examined series)
row 1: index of candidate series (I3); number of reference series (I3)
row 2: indexes of reference series(I3)
  1
     9
  2
     3
        4
          5 6 7 8 9 10
  2
     6
  1
     3
        4
           6
             7
                 9
  3
     9
  1
     2
           5
              678
                       9 10
        4
     9
  4
     2
           5
                78
  1
        3
              6
                       9 1 0
  5
     7
           7
  1
     3
        4
              8
                 9 10
  6
     6
  1
     2
        3
           4
              7
                  9
  7
     9
     2
  1
        3
           4
             5
                 6 8
                       9 10
     7
  8
              7 9 10
  1
     3
        4
           5
  9
     9
     2
  1
        3
           4 5 6
                    7 8 10
 10
     7
```

1 3 4 5 7 8 9

Table of META DATA: HUNMETA.DAT

```
TABLE OF META DATA (one or two rows belong to each examined series)
row 1: index of examined series(I3); number of meta data(I5)
row 2: meta data(I5), if they exist
 1
      8
 1909 1960 1986 1987 1988 1991 1992 1993
 2
      3
 1950 1954 1955
 3
      7
 1943 1944 1945 1946 1947 1969 1970
 4
      6
 1922 1930 1938 1950 1964 1965
 5
      5
 1950 1960 1966 1969 1970
 6
      8
 1950 1951 1960 1965 1966 1967 1991 1992
 7
      4
 1950 1957 1958 1960
 8
      1
 1973
       2
 9
 1950 1951
 10
      1
 1950
```

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	40

Table of Filambda Station Coordinates: HUNCOORD.PAR

index 1 2	lambda(x) 19.02499960 21.60833360	fi(y) 47.50833510 47.49166490	Budapest Debrecen
•		46 05000510	a 1
9 10	20.09166720 16.63333320	46.25833510 47.26666640	Szeged Szombathely

99 1021.60a12.00 8.08 .05 Name of Data File: huntemp.dat MISSING VALUES! Model: additive Number of series: 10 Length of series: 99 Significance level: .05 Critical value for break points: 21.60 Critical value for correction: 12.00 Critical value for outliers: 8.08 EXAMINED SERIES AND INDEXES bp: 1 de: 2 ke: 3 mi: 4 mo: 5 ny: 6 sr: 8 se: 9 so:10 pe: 7 TABLE OF REFERENCE SYSTEM (two rows belong to each examined series) row 1: index of candidate series(I3); number of reference series(I3) row 2: indexes of reference series(I3) 1 9 3 4 5 6 7 8 9 10 2 2 6 1 3 4 6 7 9 3 9 2 1 4 5 6 7 8 9 10 4 9 2 1 3 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 9 7 9 2 1 3 4 5 6 8 9 10 8 7 4 5 7 9 10 1 3 9 9 1 2 3 4 5 6 7 8 10 10 7 1 3 4 5 7 8 9 File of Meta Data: MASHMETA.DAT

Original series (with missing values): MASHMISS.SER Original series (without missing values): MASHDAT.SER Homogeneity series: MASHHOM.SER Inhomogeneity series: MASHINH.SER Automatic filling of missing values: MASHMISS.BAT Automatic correction of outliers: MASHLIER.BAT GAME of MASH: MASHGAME.BAT Non-automatic correction: MASHCOR.BAT Verification of Homogenization: MASHVERI.BAT

CARPATCLIM Report	Date 01/03/2013	Version <i>final</i>	Page 41
Graphics: MASH	DRAW.BAT		
Figure 1. Output	of Parametrization (MASHP	PAR.PAR)	
	CANDIDATE SERIES:	bp	
DATE OF MISSIN EXCLUDED REFER OPTIMAL POSITI	ENCE SERIES: de	RORS	
	ke ny sr s 81 .24556 .54768 .0439	o Variance 6 .06357	
INTERCEPT: ESTIMATED VALU	1.34 E: 11.73		
	CANDIDATE SERIES:	de	
DATE OF MISSIN EXCLUDED REFER OPTIMAL POSITI	ENCE SERIES: bp	RORS	
	ke ny Variance 17 .71383 .06031	std.error .24559	
INTERCEPT: ESTIMATED VALU	04 E: 10.46		
	CANDIDATE SERIES:	de	
DATE OF MISSIN THERE IS NO EX OPTIMAL POSITI	IATION: .5411 .7356 G VALUE: 1928 CLUDED REFERENCE SERIES VE WEIGHTING ES, WEIGHTING FACTORS, ER	RORS	
de .351	bp ke mi n 21 .12020 .02383 .5047	y Variance 6 .04568	std.error .21374
INTERCEPT: ESTIMATED VALU			
	CANDIDATE SERIES:	de	
DATE OF MISSIN EXCLUDED REFER OPTIMAL POSITI	IATION: .5411 .7356 G VALUE: 1996 ENCE SERIES: pe VE WEIGHTING ES, WEIGHTING FACTORS, ER	RORS	
	bp ke mi n 21 .12020 .02383 .5047		
INTERCEPT: ESTIMATED VALU			

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	42

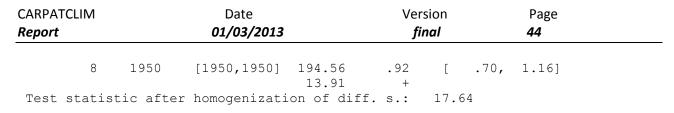
Figure 2. Part of Statistical Results of Filling Missing Values (MASHMISS.RES)

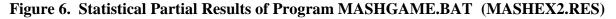
TEST STATISTICS FOR SERIES INHOMOGENEITY Null hypothesis: the examined series are homogeneous. Critical value (significance level .05): 21.60 Test statistics (TS) can be compared to the critical value. The larger TS values are more suspicious!

Series	Index	k TS	Series	Index	TS	Series	Index	TS
bp	1	719.39	de	2	151.68	ke	3	599.99
mi	4	1180.70	mo	5	160.65	ny	6	137.37
pe	7	457.81	sr	8	111.60	se	9	828.81
SO	10	100.97						
AVERAG	Е:	444.90						

Figure 3. Part of First Output of Verification Program MASHVERI.BAT (MASHVERI.RES)

TEST STATISTICS FOR EVALUATION OF META DATA Null hypothesis: the inhomogeneities can be explained by the Meta Data. Critical value (significance level .05): 21.60 Test statistics (TSM) can be compared to the critical value. The larger TSM values are more suspicious!


Series	Index	x TSM	Series	Index	TSM	Series	Index	TSM
bp	1	53.09	de	2	41.63	ke	3	96.93
mi	4	1180.70	mo	5	88.35	ny	6	120.16
pe	7	228.76	sr	8	41.62	se	9	92.58
SO	10	77.92						
AVERAG	Е:	202.17						


Figure 4. Part of First Output of Verification Program MASHVERI.BAT (MASHVERI.RES)

Application of Program MASHGAME.BAT (one step)

HELP: TABLE FOR SELECTION OF REFERENCE SERIES AND/OR CANDIDATE SERIES Null hypothesis 1: the examined series are homogeneous. Test Statistics belonging to the null hypothesis 1: TS Null hypothesis 2: the inhomogeneities can be explained by the Meta Data. Test Statistics belonging to the null hypothesis 2: TSM Critical value (significance level .05): 21.60 Test Statistics (both TS and TSM) can be compared to the critical value. The larger Test Statistics are more suspicious! Series marked with asterisk(*) are not used for reference series. Candidate series: mi Index: 4 TS: 1155.78* TSM: 1155.78 Reference series: bp Index: 1 TS: 279.07* TSM: 57.92 Reference series: de Index: 2 TS: 68.20 TSM: 49.58 Reference series: ke Index: 3 TS: 96.73 TSM: 35.91 Reference series: mo Index: 5 TS: 82.01 TSM: 62.51 Reference series: ny Index: 6 TS: 177.52* TSM: 56.82 Reference series: pe Index: 7 TS: 512.79* TSM: 185.26 Reference series: sr Index: 8 TS: 104.88 TSM: 56.83 Reference series: se Index: 9 TS: 934.22* TSM: 83.67 Reference series: so Index: 10 TS: 162.95* TSM: 116.41

CARPATCLIM Report		Date 01/03/2013		Ver: <i>fir</i>	sion nal	Page 43	
Figure 5. Par	tial Outpu	ut of Program M	ASHGAN	1E.BAT (On the Scree	en)	
CANDIDATE SE	RIES:	mi (Ind	ex: 4)				
		E SERIES: 2 EIGHTING FACTO	RS, VARI	ANCE OF D	IFFERENCE :	SERIES	
mi .	ke 66227 .		iance 06984	Devia .264			
mi .	de 77541 .		iance 04675	Devia .216			
NO FORMER E	STIMATED	BREAKS					
EXAMINATION	I OF DIFF	ERENCE SERIES					
	'S (crit	S ical value: 2 pre homogenizat Conf. Int.	ion of d	iff. s.: Shift	420.27 Conf. 1	Int.	
1	1908	[1908,1908]	8.46	+			
2	1921	[1919,1922]	19.54 80.06	-	[.52,		
3	1931	[1929,1932]	4.38 59.00	+	[-1.19,		
4	1939	[1937,1940]	2.11 38.34		[1.30]	
5	1943	[1941,1949]	5.74 22.07	61	[-1.24,	19]	
6	1950	[1945 , 1959]	1.04 22.73	.47	[.14,	.88]	
7	1964	[1962 , 1967]	4.71 33.55	.67	[.27,	1.06]	
8	1969	[1968,1971]	3.36 39.69	67	[-1.04,	30]	
Test statis	stic afte	er homogenizati	10.64 on of di		19.54		
	S (crit tic befo	S ical value: 2 pre homogenizat Conf. Int.	ion of d	iff. s.: Shift	895.43 Conf. 1	Int.	
1	1904	[1902 , 1906]	2.21 26.92		[.22,	1.08]	
2	1908	[1908,1908]	6.82 498.17	-2.09	[-2.42,	-1.77]	
3	1916	[1915 , 1916]	1.76 35.92	52	[83,	22]	
4	1921	[1921,1922]		+ 1.06 +	[.77,	1.35]	
5	1931	[1929 , 1932]	12.16 44.86 3.74	41	[87,	28]	
			3.74	+			
6	1939	[1933 , 1940]	25.43 7.68		[.16,	.88]	

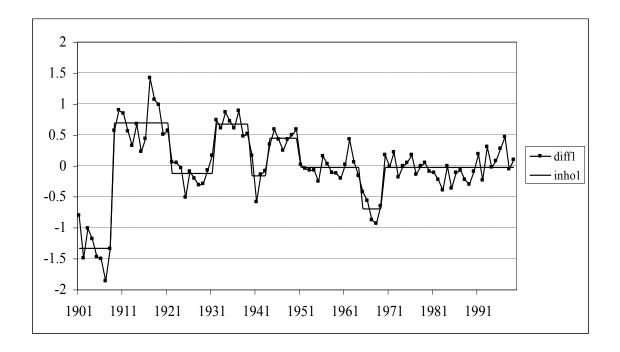


Figure 7. Graphic Partial Results of Program MASHGAME.BAT: Difference series 1 with its estimated Inhomogeneity series (MASHEX2.SER, MASHDRAW.BAT)

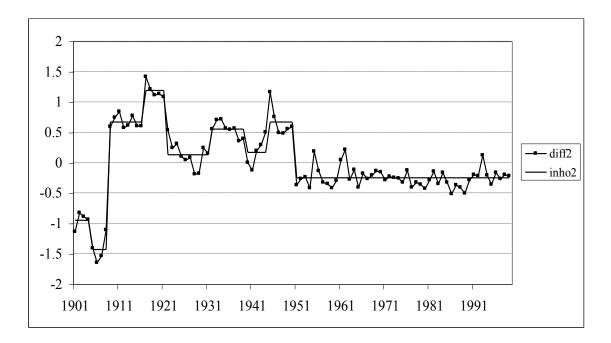


Figure 8. Graphic Partial Results of Program MASHGAME.BAT: Difference series 2 with its estimated Inhomogeneity series (MASHEX2.SER, MASHDRAW.BAT)

CARPATCLIM <i>Report</i>	Date 01/03/2013	Version <i>final</i>	Page 45
ESTIMATED BREAK POINTS (Mark M: META DATA)	AND SHIFTS		
bp: No Break Points			
de: No Break Points			
ke: No Break Points			
mi: 1908: -1.78/ M1922: M1950: .47	.78/ M1930:	41/ M1938: .	38/ 1944:35/
mo: No Break Points			
ny: No Break Points			
pe: No Break Points			
sr: No Break Points			
se: No Break Points			
so: No Break Points			

Figure 9. Result of Examination made by Program MASHGAME.BAT (MASCOR.RES)

HELP: TABLE FOR SELECTION OF REFERENCE SERIES AND/OR CANDIDATE SERIES Null hypothesis 1: the examined series are homogeneous. Test Statistics belonging to the null hypothesis 1: TS
Null hypothesis 2: the inhomogeneities can be explained by the Meta Data. Test Statistics belonging to the null hypothesis 2: TSM Critical value (significance level .05): 21.60
Test Statistics (both TS and TSM) can be compared to the critical value. The larger Test Statistics are more suspicious! Series marked with asterisk(*) are not used for reference series.
Candidate series: mi Index: 4 TS: 76.28* TSM: 57.04 Reference series: bp Index: 1 TS: 279.07* TSM: 57.92 Reference series: de Index: 2 TS: 68.20 TSM: 49.58 Reference series: ke Index: 3 TS: 96.73 TSM: 35.91 Reference series: mo Index: 5 TS: 82.01 TSM: 62.51 Reference series: ny Index: 6 TS: 177.52* TSM: 56.82 Reference series: pe Index: 7 TS: 512.79* TSM: 185.26 Reference series: sr Index: 8 TS: 104.88 TSM: 56.83 Reference series: se Index: 9 TS: 934.22* TSM: 83.67 Reference series: so Index: 10 TS: 162.95* TSM: 116.41

Figure 10. Last Output of Program MASHGAME.BAT after Automatic Correction (On the Screen)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	46

Verification of Homogenization (MASHVERI.BAT)

Null h Critic Test s	ypothes al valu tatisti	TISTICS FOR is: the exame e (signification cs (TS) can values are	mined serie ance level be compare	es are h .05): ed to th	omogeneous 21.60			
1 Tes	t Stati	stics After	Homogeniz	ation				
Series	Index	TSA	Series	Index	TSA	Series	Index	TSA
bp	1	26.51	de	2	18.01	ke	3	29.93
mi	4	22.64	mo	5	16.94	ny	5	29.93
pe	7	26.99	sr	8	30.01	se	9	26.11
so	10	13.89	51	0	30.01	56)	20.11
AVERAG		23.32						
-		stics Before	- Homogeni	zation				
Series	Index	TSB	Series		TSB	Series	Index	TSB
bp	1	719.39	de	2	151.68	ke	3	599.99
mi		1180.70	mo	5	160.65		6	137.37
	4 7		sr	8	111.60	ny se	9	828.81
pe so	10	100.97	51	0	111.00	56)	020.01
AVERAG		44.90						
		for Estima	ted Inhomo	reneitie	C			
		can be com						
Series	Index	IS	Series	Index	IS	Series	Index	IS
bp	1	570.28	de	2	212.85	ke	3	296.11
mi	4	1121.99	mo		77.62	-	6	37.03
	4 7	438.62	sr	8	54.16	ny se	9	627.87
pe so	10	90.94	51	0	34.10	50	9	027.07
AVERAG		52.75						
		RIZATION OF stimated Inl						
Series	Index	RI1	Series	Index	RI1	Series	Index	RI1
	1 1	.36	de	2	.29	ke	3	.32
bp mi	1 4	.50		2 5	.29		6	.32
	4 7	. 52	mo	8	.22	ny	9	.12
pe	10	.43	sr	0	• 1 4	se	9	.45
so Averagi		.30						
			of Comina					
		odification		Tradere	DT O	Contoo	Telere	DTO
Series	Index 1	RI2	Series	Index 2	RI2 .41	Series	Index 3	RI2
bp mi	1 4	.49 .53	de	2 5	.41	ke		.43
	4 7	.55	mo	8	.20	ny	6 9	.12
pe	10	.80	sr	0	• 2 1	se	9	. 70
so AVERAG		.41						
		idence Limi [.]	t for Pola	tivo Pos	idual Inho	mogonoitio	-	
		level: .9		LIVE KES		mogenercie	5	
Series	Index	RI3	Series	Index	RI3	Series	Index	RI3
	1			2	.00	ke	3	
bp	1 4	.01 .00	de	2 5	.00			.03
mi	4	.00	mo	8	.00	ny	6 9	.00
pe	10	.02	sr	0	.02	se	9	.05
SO								
AVERAG	E:	.01						
		TATIVITY OF terpolation		ETWORK				
Series	Index	RS	Series	Index	RS	Series	Index	RS
bp	1	.84	de	2	.82	ke	3	.82
mi	4	.80	mo	5	.82	ny	6	.81
pe	7	.78	sr	8	.80	se	9	.81
so	10	.82						

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	47	

AVERAGE:

.81

Figure 11.a, Verification Results after Finishing the Homogenization Procedure (MASHVERI.RES)

EVALUATION OF META DATA

Null h Critic Test s	al valu tatisti	is: the inh e (signific	ance level n be compa	.05): red to	the critical	-	eta Data	à.
Series	-	TSM	Series	-	TSM	Series	Index	TSM
		53.09	de		41.63	ke		-
- 1		1180.70			88.35	-	6	
		228.76	sr		41.62	se		92.58
-		77.92						
AVERAG	E: 2	02.17						
	-	ATIVITY OF		onoitu	con he curle	ined by t	he Meta	Data
	-		-	-	can be expla			
Series		RM				Series		RM
bp		.55			1.00	ke	3	.33
mi	4	.04	mo	5	.20	ny	6	.05
pe	7	.49	sr	8	1.00	se	9	.52
SO	10	.05						
AVERAG	E:	.42						

Figure 11.b, Verification Results for Meta Data after Finishing the Homogenization Procedure (MASHVERI.RES)

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	48	

VI. EXAMPLE FOR APPLICATION OF SAM SYSTEM

Data Files (monthly series): $m{j}$ (j=1,...,12)

Examined Series: Hungarian monthly mean temperature series (1901-1930).

Examined Stations:

1. Budapest (bp), 2. Debrecen (de), 3. Kecskemét (ke), 4. Miskolc (mi), 5. Mosonmagyaróvár (mo), 6. Nyíregyháza (ny), 7. Pécs (pe), 8. Sopron (sr), 9. Szeged (se), 10. Szombathely (so)

Table of Reference System: HUNTEMP.REF

```
TABLE OF REFERENCE SYSTEM (two rows belong to each examined series)
row 1: index of candidate series(I3); number of reference series(I3)
row 2: indexes of reference series(I3)
  1
     9
    3
  2
       4 5 6 7 8 9 10
  2
     6
             79
  1
     3
        4
          6
  3
     9
     2
  1
              67
        4
          5
                    8
                       9 10
  4
     9
     2
  1
        3
              6 7 8
          5
                       9 10
     7
  5
  1
     3
        4
          7
              8
                 9 10
  6
     6
  1
     2
        3
           4
             7
                 9
  7
     9
  1
     2
        3
             5
                       9 10
          4
                68
  8
     7
  1
     3
       4
          5
             7
                9 10
  9
     9
     2
  1
        3
          4 5 6 7 8 10
     7
 10
     3
       4 5 7 8 9
  1
```

Table of Filambda Station Coordinates: HUNCOORD.PAR

index 1 2	lambda(x) 19.02499960 21.60833360	fi(y) 47.50833510 47.49166490	Budapest Debrecen
•			
• 9	20.09166720	46.25833510	Szeged
10	16.63333320	47.26666640	Szombathely

Table of META DATA: HUNMETA.DAT (for the given period)

```
TABLE OF META DATA (one or two rows belong to each examined series)
row 1: index of examined series(I3); number of meta data(I5)
row 2: meta data(I5), if they exist
  1
       1
 1909
       0
  2
  3
       0
  4
       1
 1922
  5
       0
  6
       0
  7
       0
  8
       0
  9
       0
 10
       0
```

<pre>N0 1020.33a12.00 7.44 .05 dodel: additive Number of stations: 10 length of series: 30 ignificance level: .05 Tittical value for correction: 12.00 Tittical value for outlers: 7.44 XMANNED STATIONS AND INDEXES bp: 1 de: 2 ke: 3 mi: 4 mo: 5 ny: 6 pe: 7 sr: 8 se: 9 soil0 TALLE OF REFERENCE SYSTEM (two rows belong to each examined station) row 1: index of candidate station(I3); number of reference stations(I3) row 2: indexes of reference stations(I3) 1 9 2 3 4 5 6 7 8 9 10 2 6 3 4 5 6 7 8 9 10 5 7 1 3 4 5 7 8 9 10 6 6 1 2 3 4 5 6 7 8 9 10 5 7 1 3 4 5 7 8 9 10 6 6 7 7 1 3 4 5 7 8 9 10 7 9 9 9 1 2 3 4 5 6 7 8 10 7 9 1 3 4 5 7 8 9 Nile of Meta Data: MESHMETA.DAT Driginal monthly series: M(J), (J=1,,12) Driginal seasonal series: S(J), (J=1,2,3,4) (Winter, spring, summer, autumn) Driginal series: YEAR Homogeneity series for months: M(J) I, (J=1,,12) Indomgeneity series for seasons: S(J) (J=1,2,3,4) (Winter, spring, summer, autumn) Driginal series for months: M(J) I, (J=1,,12) Indomgeneity series for seasons: S(J), (J=1,2,3,4) (Winter, spring, summer, autumn) Drigeneity series for seasons: S(J) (J=1,2,3,4) (Winter, spring, summer, autumn) Drigeneity series for year: YEAR Inhomogeneity series for seasons: S(J) (J=1,2,3,4) (Winter, spring, summer, autumn) Drigeneity series for year: YEAR Inhomogeneity series for year: YEAR Isking the chosen monthly or seasonal series S(J) : (J=1,2,3,4) (Winter, spring, summer, autumn) Ireak Points and Shifts for year: YEAR Isking the chosen monthly or seasonal series S(J) : (J=1,2,3,4) (Winter, spring, summer, autumn) Ireak Points and Shifts for year: YEAR</pre>	eport	01/03/2013	final	Page 49
<pre>pe: 7 sr: 8 se: 9 so:10 TABLE OF REFERENCE SYSTEM (two rows belong to each examined station) row 1: index of candidate station(I3); number of reference stations(I3) row 2: indexes of reference stations(I3) 1 9 2 3 4 5 6 7 8 9 10 2 6 1 3 4 6 7 9 9 1 2 3 5 6 7 8 9 10 4 9 1 2 3 5 6 7 8 9 10 6 6 7 1 3 4 7 8 9 10 6 6 7 1 3 4 7 8 9 10 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 8 9 10 7 1 3 4 5 7 8 9 11 2 3 4 5 6 7 8 10 10 7 1 3 4 5 7 8 9 12 2 3 4 5 6 7 8 10 10 7 13 4 5 7 8 9 12 2 3 4 5 6 7 8 10 10 7 13 4 5 7 8 9 12 2 3 4 5 6 7 8 10 10 7 13 4 5 7 8 9 12 3 4 5 6 7 8 10 10 7 13 4 5 7 8 9 12 6 7 13 4 5 7 8 9 13 4 5 7 9 10 9 9 14 2 3 4 5 6 7 8 10 15 7 15 7 15 7 15 7 15 7 15 7 15 7 15 7</pre>	Model: additive Number of stations: Length of series: 30 Significance level: Critical value for bu Critical value for co Critical value for ou	10 .05 reak points: 20.53 prrection: 12.00 utliers: 7.44		
<pre>cow 1: index of candidate station(I3); number of reference stations(I3) row 2: indexes of reference stations(I3) 1 9 2 3 4 5 6 7 8 9 10 2 6 1 3 4 6 7 9 9 1 2 4 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 5 6 7 8 9 10 7 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 8 9 10 7 9 1 3 4 5 7 8 9 rile of Meta Data: MESHMETA.DAT Driginal monthly series: M(J), (J=1,,12) riginal seasonal series: S(J)H, (J=1,,12) indigenerational series: YEAR iomogenized seasonal series: S(J)H, (J=1,,12) indigeneration seasonal series: S(J)H, (J=1,,12) indigenerate and series: YEAR iomogenized seasonal series: S(J)H, (J=1,,12) indigenerate annual series: S(Z)H, (J=1,,12) indigenerate annual series for year: YEARI indigenerate annual and Shifts for year: YEARC indigenerate annual</pre>	-			ny: 6
<pre>2 3 4 5 6 7 8 9 10 2 6 3 9 1 2 4 5 6 7 8 9 10 4 9 1 2 3 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 8 9 10 6 6 1 2 3 4 7 9 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 10 57 57 57 57 57 57 57 57 57 57 57 57 57</pre>	row 1: index of cand: row 2: indexes of re:	idate station(I3);	number of reference	
<pre>2 6 1 3 4 6 7 9 9 9 1 2 4 5 6 7 8 9 10 7 7 1 3 4 7 8 9 10 6 6 2 3 4 7 8 9 10 6 6 7 7 1 3 4 7 8 9 10 6 6 7 7 1 3 4 5 6 8 9 10 7 9 1 2 3 4 5 6 8 9 10 7 9 1 2 3 4 5 6 7 8 10 7 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 7 7 1 3 4 5 7 8 9 7 7 1 3 4 5 7 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>		9 10		
1 3 4 6 7 9 3 9 1 2 4 5 6 7 8 9 10 4 9 1 2 3 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 9 9 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 7 7 1 3 4 5 7 8 9 7ile of Meta Data: MESHMETA.DAT Driginal monthly series: $M(J)$, $(J=1,,12)$ original seasonal series: $S(J)$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) original annual series: YEAR Homogenized monthly series: $M(J)H$, $(J=1,,12)$ Homogenized seasonal series: $S(J)H$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Homogenized annual series: $YEAR$ Homogenized annual series: $S(J)H$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Homogenized annual series: $S(J)H$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Homogeneity series for months: $M(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons: $S(J)C$, $(J=1,2,3,4)$ (winter, spring, summer, autumn) Break Points and Shifts for seasons) S(J)C (J=1,2,3,4) (Winter, spring, summer, autu		9 10		
1 2 4 5 6 7 8 9 10 4 9 1 2 3 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 9 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 1 4 1	1 3 4 6 7 9			
<pre>4 9 1 2 3 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 9 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 7 1 3 4 5 7 8 9 7 7 1 3 4 5 7 8 9 7 7 1 3 4 5 7 8 9 7 7 1 3 4 5 7 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>				
<pre>1 2 3 5 6 7 8 9 10 5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 9 7 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Sile of Meta Data: MESHMETA.DAT briginal monthly series: M(J), (J=1,,12) Driginal seasonal series: S(J), (J=1,2,3,4) Winter,spring, summer, autumn) Driginal annual series: YEAR Comogenized seasonal series: S(J)H, (J=1,2,3,4) Winter, spring, summer, autumn) Doriginal annual series: S(J)H, (J=1,2,3,4) Winter, spring, summer, autumn) Driginal annual series: S(J)H, (J=1,2,3,4) Winter, spring, summer, autumn) Comogenized annual series: S(J)H, (J=1,2,3,4) Winter, spring, summer, autumn) Comogeneity series for seasons: S(J)I, (J=1,2,3,4) Winter, spring, summer, autumn) Comogeneity series for seasons: S(J)C, (J=1,2,3,4) Winter, spring, summer, autumn) Chomogeneity series for seasons: S(J)C, (J=1,2,3,4) Winter, spring, summer, autumn) Chomogeneity and Shifts for seasons: S(J)C, (J=1,2,3,4) Winter, spring, summer, autumn) Sreak Points and Shifts for seasons: S(J)C, (J=1,2,3,4) Winter, spring, summer, autumn) Sreak Points and Shifts for year: YEARC Caking the chosen monthly or seasonal series In: SAMIN.BAT</pre>		9 10		
5 7 1 3 4 7 8 9 10 6 6 1 2 3 4 7 9 7 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Sile of Meta Data: MESHMETA.DAT briginal monthly series: M{J}, $(J=1,,12)$ briginal seasonal series: S{J}, $(J=1,2,3,4)$ winter, spring, summer, autumn) briginal annual series: YEAR lomogenized seasonal series: S{JH, $(J=1,,12)$ tomogenized seasonal series: S{JH, $(J=1,2,3,4)$ winter, spring, summer, autumn) brogenized seasonal series: S{JH, $(J=1,2,3,4)$ winter, spring, summer, autumn) lomogeneity series for months: M{JH, $(J=1,,12)$ nhomogeneity series for seasons: S{JI, $(J=1,2,3,4)$ winter, spring, summer, autumn) nhomogeneity series for seasons: S{JI, $(J=1,2,3,4)$ winter, spring, summer, autumn) nhomogeneity series for seasons: S{JC, $(J=1,2,3,4)$ winter, spring, summer, autumn) reak Points and Shifts for year: YEARC Texak Points and Shifts for year: YEARC Taking the chosen monthly or seasonal series In: SAMIN.BAT		9 10		
<pre>1 3 4 7 8 9 10 6 6 7 9 1 2 3 4 7 9 7 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 7 1 3 4 5 7 8 9 7 1</pre>		5 10		
1 2 3 4 7 9 7 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Yile of Meta Data: MESHMETA.DAT Original monthly series: $M{J}$, $(J=1,,12)$ Original seasonal series: $S{J}$, $(J=1,2,3,4)$ winter, spring, summer, autumn) Original annual series: YEAR Iomogenized monthly series: $M{J}$ H, $(J=1,,12)$ Iomogenized seasonal series: $S{J}$ H, $(J=1,2,3,4)$ Winter, spring, summer, autumn) Iomogenized seasonal series: $S{J}$ H, $(J=1,2,3,4)$ Winter, spring, summer, autumn) Iomogeneity series for months: $M{J}$ I, $(J=1,,12)$ Inhomogeneity series for seasons: $S{J}$ I, $(J=1,,12)$ Inhomogeneity series for seasons: $S{J}$ C, $(J=1,2,3,4)$ Winter, spring, summer, autumn) Inhomogeneity and Shifts for seasons: $S{J}$ C, $(J=1,2,3,4)$ Winter, spring, summer, autumn) Inhomogeneity and Shifts for seasons: $S{J}$ C, $(J=1,2,3,4)$ Winter, spring, summer, autumn) Inhomogeneity and Shifts for seasons: $S{J}$ C, $(J=1,2,3,4)$ Winter, spring, summer, autumn)				
7 9 1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Tile of Meta Data: MESHMETA.DAT rriginal monthly series: $M{J}$, $(J=1,,12)$ original seasonal series: $S{J}$, $(J=1,2,3,4)$ winter, spring, summer, autumn) original annual series: YEAR tomogenized monthly series: $M{J}H$, $(J=1,,12)$ lomogenized seasonal series: $S{J}H$, $(J=1,2,3,4)$ winter, spring, summer, autumn) tomogeneity series for months: $M{J}II$, $(J=1,,12)$ inhomogeneity series for seasons: $S{J}II$, $(J=1,2,3,4)$ winter, spring, summer, autumn) nhomogeneity series for months: $M{J}II$, $(J=1,,12)$ inhomogeneity series for year: YEARI treak Points and Shifts for seasons: $S{J}C$, $(J=1,,12)$ ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) reak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) ireak Points and Shifts for seasons: $S{J}C$ ireak Points and Shifts for seasons: $S{J}C$ ireak Points and Shifts for seasons: $S{J}C$ ireak Points and Shifts for seasonal series In: SAMIN.BAT				
1 2 3 4 5 6 8 9 10 8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Tile of Meta Data: MESHMETA.DAT riginal monthly series: $M{J}$, $(J=1,,12)$ original seasonal series: $S{J}$, $(J=1,2,3,4)$ winter, spring, summer, autumn) riginal annual series: YEAR comogenized monthly series: $M{J}H$, $(J=1,,12)$ comogenized seasonal series: $S{J}H$, $(J=1,2,3,4)$ winter, spring, summer, autumn) comogeneity series for months: $M{J}I$, $(J=1,,12)$ nhomogeneity series for seasons: $S{J}I$, $(J=1,2,3,4)$ winter, spring, summer, autumn) nhomogeneity series for seasons: $S{J}I$, $(J=1,2,3,4)$ winter, spring, summer, autumn) nhomogeneity series for year: YEARI reak Points and Shifts for months: $M{J}C$, $(J=1,,12)$ reak Points and Shifts for seasons: $S{J}C$, $(J=1,2,3,4)$ winter, spring, summer, autumn) reak Points and Shifts for year: YEARC Taking the chosen monthly or seasonal series In: SAMIN.BAT				
<pre>8 7 1 3 4 5 7 9 10 9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Tile of Meta Data: MESHMETA.DAT riginal monthly series: M{J}, (J=1,,12) riginal seasonal series: S{J}, (J=1,2,3,4) winter, spring, summer, autumn) riginal annual series: YEAR tomogenized monthly series: M{J}H, (J=1,,12) tomogenized seasonal series: S{J}H, (J=1,2,3,4) winter, spring, summer, autumn) tomogeneity series for months: M{J}I, (J=1,,12) nhomogeneity series for months: S{J}I, (J=1,2,3,4) winter, spring, summer, autumn) nhomogeneity series for year: YEARI reak Points and Shifts for months: M{J}C, (J=1,,12) reak Points and Shifts for seasons: S{J}C, (J=1,2,3,4) winter, spring, summer, autumn) reak Points and Shifts for year: YEARC Taking the chosen monthly or seasonal series In: SAMIN.BAT</pre>		9 10		
<pre>9 9 1 2 3 4 5 6 7 8 10 0 7 1 3 4 5 7 8 9 Tile of Meta Data: MESHMETA.DAT priginal monthly series: M{J}, (J=1,,12) priginal seasonal series: S{J}, (J=1,2,3,4) winter,spring,summer,autumn) priginal annual series: YEAR lomogenized monthly series: M{JH, (J=1,,12) tomogenized seasonal series: S{J}H, (J=1,2,3,4) winter,spring,summer,autumn) lomogenized annual series: YEARH inhomogeneity series for months: M{JI, (J=1,,12) nhomogeneity series for seasons: S{J}I, (J=1,2,3,4) winter,spring,summer,autumn) nhomogeneity series for year: YEARI ereak Points and Shifts for months: M{J}C, (J=1,,12) preak Points and Shifts for seasons: S{J}C, (J=1,2,3,4) winter,spring,summer,autumn) microspring,summer,autumn) microspring,summer,autumn) seak Points and Shifts for year: YEARC Taking the chosen monthly or seasonal series In: SAMIN.EAT</pre>		5 10		
<pre>1 2 3 4 5 6 7 8 10 10 7 1 3 4 5 7 8 9 File of Meta Data: MESHMETA.DAT Driginal monthly series: M{J}, (J=1,,12) Driginal seasonal series: S{J}, (J=1,2,3,4) (winter, spring, summer, autumn) Driginal annual series: YEAR Homogenized monthly series: M{J}H, (J=1,,12) Homogenized seasonal series: S{J}H, (J=1,2,3,4) (winter, spring, summer, autumn) Homogeneity series for months: M{J}I, (J=1,,12) Inhomogeneity series for seasons: S{J}I, (J=1,2,3,4) (winter, spring, summer, autumn) Homogeneity series for seasons: S{J}I, (J=1,2,3,4) (winter, spring, summer, autumn) Enhomogeneity series for year: YEARI Break Points and Shifts for months: M{J}C, (J=1,,12) Break Points and Shifts for seasons: S{J}C, (J=1,2,3,4) (winter, spring, summer, autumn) Break Points and Shifts for year: YEARC Taking the chosen monthly or seasonal series In: SAMIN.BAT</pre>				
<pre>0 7 1 3 4 5 7 8 9 Tile of Meta Data: MESHMETA.DAT priginal monthly series: M{J}, (J=1,,12) priginal seasonal series: S{J}, (J=1,2,3,4) winter,spring,summer,autumn) priginal annual series: YEAR Gomogenized monthly series: M{J}H, (J=1,,12) Gomogenized seasonal series: S{J}H, (J=1,2,3,4) winter,spring,summer,autumn) Gomogeneity series for months: M{J}I, (J=1,,12) inhomogeneity series for seasons: S{J}I, (J=1,2,3,4) winter,spring,summer,autumn) inhomogeneity series for year: YEARI Sereak Points and Shifts for months: M{J}C, (J=1,,12) Break Points and Shifts for seasons: S{J}C, (J=1,2,3,4) winter,spring,summer,autumn) Break Points and Shifts for year: YEARC Caking the chosen monthly or seasonal series In: SAMIN.BAT</pre>		0 10		
<pre>1 3 4 5 7 8 9 Sile of Meta Data: MESHMETA.DAT Original monthly series: M{J}, (J=1,,12) Original seasonal series: S{J}, (J=1,2,3,4) (winter,spring,summer,autumn) Original annual series: YEAR Momogenized monthly series: M{J}H, (J=1,,12) Momogenized seasonal series: S{J}H, (J=1,2,3,4) (winter,spring,summer,autumn) Momogeneity series for months: M{J}I, (J=1,,12) Enhomogeneity series for seasons: S{J}I, (J=1,2,3,4) (winter,spring,summer,autumn) Momogeneity series for year: YEARI Break Points and Shifts for months: M{J}C, (J=1,,12) Break Points and Shifts for year: YEARC Caking the chosen monthly or seasonal series In: SAMIN.BAT</pre>		8 10		
Driginal monthly series: M{J}, (J=1,,12) Driginal seasonal series: S{J}, (J=1,2,3,4) (Winter,spring,summer,autumn) Driginal annual series: YEAR Homogenized monthly series: M{J}H, (J=1,,12) Homogenized seasonal series: S{J}H, (J=1,2,3,4) (Winter,spring,summer,autumn) Homogeneity series for months: M{J}I, (J=1,,12) Enhomogeneity series for seasons: S{J}I, (J=1,2,3,4) (Winter,spring,summer,autumn) Enhomogeneity series for year: YEARI Break Points and Shifts for months: M{J}C, (J=1,,12) Break Points and Shifts for seasons: S{J}C, (J=1,2,3,4) (Winter,spring,summer,autumn) Break Points and Shifts for seasons: S{J}C, (J=1,2,3,4) (Winter,spring,summer,autumn) Break Points and Shifts for year: YEARC Caking the chosen monthly or seasonal series In: SAMIN.BAT				
Caking the chosen monthly or seasonal series In: SAMIN.BAT	Driginal monthly series original seasonal series (winter, spring, summer Driginal annual series Domogenized monthly series Domogenized seasonal (winter, spring, summer Domogeneity series Schomogeneity series (winter, spring, summer Domogeneity series Break Points and Shir Streak Points and Shir (winter, spring, summer	<pre>ies: M{J}, (J=1, ries: S{J}, (J=1,2 r,autumn) es: YEAR series: M{J}H, (J= series: S{J}H, (J r,autumn) eries: YEARH for months: M{J}I for seasons: S{J} r,autumn) for year: YEARI fts for months: M{ fts for seasons: S r,autumn)</pre>	<pre>,3,4) 1,,12) =1,2,3,4) , (J=1,,12) I, (J=1,2,3,4) J}C, (J=1,,12) {J}C, (J=1,2,3,4)</pre>	
	Caking the chosen mor	nthly or seasonal	series In: SAMIN.BAT	

Figure 1. Output of Parametrization (SAMPAR.PAR)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	50

1. Taking Month August In (SAMIN.BAT)

TAKING SERIES IN

SEASONAL INDEXES MONTHS: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 WINTER: 13 SPRING: 14 SUMMER: 15 AUTUMN: 16 YEAR: 17 MONTHS with MISSING VALUES: 7 8 MONTHS without FILLING : 7 8 Index? 8 (for example) EXAMINED STATIONS AND INDEXES bp: 1 de: 2 ke: 3 mi: 4 mo: 5 ny: 6 pe: 7 sr: 8 se: 9 so:10 Information, Parameters: SAMPAR.PAR, MASHPAR.PAR File of Meta Data: MASHMETA.DAT Original series (with missing values): MASHMISS.SER Original series (without missing values): MASHDAT.SER Homogenized series: MASHHOM.SER Inhomogeneity series: MASHINH.SER Break Points and Shifts: MASHCOR.RES Automatic filling of missing values: MASHMISS.BAT Automatic correction of outliers: MASHLIER.BAT GAME of MASH: MASHGAME.BAT Comparing Test for seasonal series: SAMTEST.BAT Non-automatic correction: MASHCOR.BAT Verification of Homogenization: MASHVERI.BAT Graphics: MASHDRAW.BAT

MISSING VALUES! THE FIRST STEP: MASHMISS.BAT

Figure 2. Partial Output of Program SAMIN.BAT on the Screen

2. The Further Steps

Filling of missing values (MASHMISS.BAT); Correction of outliers (MASHLIER.BAT); Taking month AUGUST Out (SAMOUT.BAT).

Taking month JULY In (SAMIN.BAT); Filling of missing values (MASHMISS.BAT); Correction of outliers (MASHLIER.BAT); Taking month JULY Out (SAMOUT.BAT).

Taking month JUNE In (SAMIN.BAT); Correction of outliers (MASHLIER.BAT); Taking month JUNE Out (SAMOUT.BAT).

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	51

3. The Next Steps: Examination of Season SUMMER

There is a possibility for examination of the seasonal series instead of the monthly series. The monthly inhomogeneities can be corrected by usage of the detected seasonal inhomogeneities, if the monthly inhomogeneities are identical within the given season.

3.1 Taking Season SUMMER In (SAMIN.BAT), Application of Program SAMTEST.BAT

HELP: TEST TABLE TOTAL COMPARISON of the Inhomogeneities between summer Months and Summer Null hypothesis: the monthly and the seasonal inhomogeneities are identical. Critical value (significance level 0.05): 50.00 Test statistics (TS) can be compared to the critical value. The larger TS values are more suspicious!
 Station
 Index
 TS
 Station
 Index

 de
 2
 24.37
 ke
 3

 mo
 5
 22.01
 ny
 6

 sr
 8
 20.84
 se
 9
 Station Index TS ΤS bp 1 20.25 ke 3 51.12 18.65 21.42 4 15.74 mi 7 25.89 ре 10 19.83 SO Index of excluded station: 3

Figure 3. Output of Test Program SAMTEST.BAT (SAMTEST.RES)

It can be seen that the null hypothesis can be accepted for all the stations with exception of station ke (index 3).

3.2 Homogenization of the SUMMER Series by more running of MASHGAME.BAT

```
ESTIMATED BREAK POINTS AND SHIFTS
  (Mark M: META DATA)
   bp:
 M1909: .26
   de:
 No Break Points
   ke:
        .39/ 1928: -.39
  1927:
   mi:
  1908: -3.74
   mo:
 No Break Points
   ny:
  1901:
         .93
   pe:
        .52/ 1921: -1.18
  1918:
   sr:
 No Break Points
   se:
  1918: -.76
   so:
  1917: .25
```

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	52

Figure 4. Detected SUMMER Inhomogeneities (MASHCOR.RES)

3.3 Evaluation of the Homogenization of SUMMER Series

TEST STATISTICS FOR SERIES INHOMOGENEITY, BEFORE HOMOGENIZATION Null hypothesis: the examined series are homogeneous. Critical value (significance level .05): 20.53 Test statistics (TS) can be compared to the critical value. The larger TS values are more suspicious! Series Index TSB Series Index TSB Series Index TSB de 2 16.61 ke 3 41.88 bp 1 97.59 5 27.64 4 1012.34 39.53 6 mi mo ny 9 7 82.45 se 8 8.01 67.78 ре sr so 10 84.04

TEST STATISTICS FOR SERIES INHOMOGENEITY, AFTER HOMOGENIZATION Null hypothesis: the examined series are homogeneous. Critical value (significance level .05): 20.53 Test statistics (TS) can be compared to the critical value. The larger TS values are more suspicious! Series de 2 7.31 mo 5 19.10 4.91 Series Index TSA Series Index Series Index TSA 1 10.49 4 27.96 bp ke 3 19.16 mi ny 6 10.23 7 22.70 se 9 16.18 pe SO 10 12.21

Figure 5. Partial Outputs of MASHVERI.BAT Before and After Homogenization (MASHVERI.RES)

TEST STATISTICS FOR EVALUATION OF META DATA Null hypothesis: the inhomogeneities can be explained by the Meta Data. Critical value (significance level .05): 20.53 Test statistics (TSM) can be compared to the critical value. The larger TSM values are more suspicious! Series Index TSM Series Index TSM Series Index

001100	1110021	1011	DOTIOD	THOUTH	1011	DOTIOD	1110021	1011
bp	1	9.18	de	2	20.45	ke	3	38.11
mi	4	971.28	mo	5	17.86	ny	6	39.53
pe	7	82.45	sr	8	8.01	se	9	71.13
SO	10	68.18						

тсм

Figure 6. Partial Output of MASHVERI.BAT (MASHVERI.RES)

3.4 Taking Season SUMMER Out (SAMOUT.BAT)

Homogenization of summer (June, July, August) monthly series on the basis of the detected summer inhomogeneities with exception of station ke (index 3) as a result of the Test Program SAMTEST.BAT (see Figure 3)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	53

4. Evaluation of the Homogenization of Monthly Series

4	.1 Takir	i <mark>g month JU</mark> I	NE In (SAM	IN.BAT)	; Applicatio	on of MASH	VERI.BA	ΔT
TEST ST	ATISTIC	S FOR SERIE	S INHOMOGE	NEITY				
Null hy	pothesi	s: the exam	ined serie	s are ho	omogeneous	•		
Critica	l value	(significa	nce level	0.05):	20.53			
Test st	atistic	s (TS) can	be compare	d to the	e critical	value.		
The lar	ger TS	values are	more suspi	cious!				
1. Test	Statis	tics After	Homogeniza	tion				
	Index	TSA	Series	Index	TSA	Series	Index	TSA
bp	1	9.71	de	2	9.98	ke	3	47.66
mi	4	43.60	mo	5	46.04	ny	6	10.28
pe	7	13.54	sr	8	14.17	se	9	28.10
SO	10	11.97						
2. Test	Statis	tics Before	Homogeniz	ation				
Series	Index	TSB	Series	Index	TSB	Series	Index	TSB
bp	1	24.42	de	2	7.78	ke	3	193.87
mi	4	633.59	mo	5	43.84	ny	6	27.35
pe	7	28.89	sr	8	14.92	se	9	88.49
SO	10	53.76						

Figure 7. Part of Verification Output MASHVERI.RES

4.2 Taking Month JULY In (SAMIN.BAT); Application of MASHVERI.BAT

Null hy Critica	pothes l valu	CS FOR SERIE is: the exam e (significa: stics After 2	ined serie nce level	s are h 0.05):	2			
Series	Index	TSA	Series	Index	TSA	Series	Index	TSA
bp	1	19.71	de	2	20.36	ke	3	21.23
mi	4	18.29	mo	5	28.06	ny	6	12.60
pe	7	23.32	sr	8	6.01	se	9	75.59
SO	10	12.09						
2. Test	Stati	stics Before	Homogeniz	ation				
Series	Index	TSB	Series	Index	TSB	Series	Index	TSB
bp	1	55.93	de	2	10.03	ke	3	59.38
mi	4	764.40	mo	5	45.49	ny	6	53.30
pe	7	54.73	sr	8	5.99	se	9	78.28
SO	10	50.69						

Figure 8. Part of Verification Output MASHVERI.RES

4.3 Taking Month AUGUST In (SAMIN.BAT); Application of MASHVERI.BAT

TEST STA	ATISTIC	S FOR SERIE	S INHOMOGE	NEITY				
Null hy	ypothes	is: the exa	mined seri	es are h	omogeneous.			
Critica	al valu	e (signific	ance level	0.05):	20.53			
1. Test	: Stati	stics After	Homogeniz	ation				
Series	Index	TSA	Series	Index	TSA	Series	Index	TSA
bp	1	8.10	de	2	9.16	ke	3	10.21
mi	4	27.00	mo	5	9.02	ny	6	8.57
pe	7	10.67	sr	8	14.93	se	9	12.97
SO	10	15.46						
2. Test	Statis	tics Before	Homogeniz	ation				
Series	Index	TSB	Series	Index	TSB	Series	Index	TSB
bp	1	140.42	de	2	39.04	ke	3	8.82
mi	4	1935.64	mo	5	14.22	ny	6	23.56
pe	7	53.83	sr	8	18.30	se	9	26.14
SO	10	32.30						

Figure 9. Part of Verification Output MASHVERI.RES

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	54

5. Verification of Homogenization for SUMMER series (MASHVERI.BAT)

Null h Critic Test s	ypothes: al value tatistie	TISTICS FOR is: the exame e (signific cs (TS) can values are	mined seri ance level be compar	es are 1 0.05): ed to ti	homogeneous 20.53			
		stics After	-					
Series	Index	TSA	Series	Index	TSA	Series	Index	TSA
mi	4	27.96	pe	7	22.70 16.18	ke	3	19.16
mo bp	5 1	19.10 10.49	se	9 6	10.23	so de	10 2	12.21 7.31
sr	18	4.91	ny	0	10.25	úe	2	1.51
AVERAG	•	15.02						
-		stics Befor	e Homogeni	zation				
Series	Index	TSB	Series	Index	TSB	Series	Index	TSB
mi	4	1012.34	bp	1	97.59	SO	10	84.04
pe	7	82.45	se	9	67.78	ke	3	41.88
ny	6	39.53	mo	5	27.64	de	2	16.61
sr	8	8.01						
AVERAG		47.79						
		for Estima						
(IS sta Series	Index	can be com IS	pared with Series	Index	B ones) IS	Contor	Trader	IS
mi	4	889.88	serres	9	128.11	Series	Index 7	42.41
bp	1	19.34	ny	6	17.29	pe so	10	9.29
ke	3	3.43	de	2	0.00	mo	5	0.00
sr	8	0.00	ac	-	0.00	1110	0	0.00
AVERAG	E: 1	10.97						
		RIZATION OF						
		stimated In	-					
Series	Index	RI1	Series	Index	RI1	Series	Index	RI1
mi	4	0.98	se	9	0.38	pe	7	0.31
ny	6	0.18	SO	10	0.15	bp	1	0.13
ke	3 8	0.08 0.00	de	2	0.00	mo	5	0.00
sr AVERAG	•	0.00						
		odification	of Series					
Series	Index	RI2	Series	Index	RI2	Series	Index	RI2
mi	4	1.14	se	9	0.61	pe	7	0.54
so	10	0.22	ny	6	0.18	bp	1	0.15
ke	3	0.08	de	2	0.00	mo	5	0.00
sr	8	0.00						
AVERAG	Е:	0.29						
		idence Limi		tive Re	sidual Inho	mogeneitie	S	
		level: 0.9		Turalana	D T C	C a mi a a	Teeless	D T 0
Series mi	Index 4	RI3 0.03	Series	Index 7	RI3 0.02	Series	Index 1	RI3 0.00
de	4	0.03	pe ke	3	0.02	bp mo	1 5	0.00
ny	6	0.00	sr	8	0.00	se	9	0.00
so	10	0.00	51	0	0.00	50	2	0.00
AVERAG		0.00						
		TATIVITY OF		ETWORK				
		terpolation		Tro-dic	DO	0	Tode	50
Series	Index 8	RS 0.64	Series	Index 4	RS 0 66	Series	Index 3	RS 0 60
sr	8 6	0.64	mi	4 7	0.66 0.75	ke	3 10	0.69 0.75
ny de	2	0.74	pe mo	5	0.79	so se	9	0.75
bp	1	0.84	1110	5	0.15	50	2	0.15
AVERAG		0.74						

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	55

Figure 10.a, Verification Results at the actual stage of Homogenization (MASHVERO.RES, ordered statistics)

EVALUATION OF META DATA

Null h Critic Test s	al value tatistic	ISTICS is: the inhom e (significan cs (TSM) can i 4 values are p	ce level oe compa	0.05); red to	: 20.53 the critical	-	eta Data	
Series	-	TSM	Series	-		Series	Index	TSM
mi	4	971.28	ре	7	82.45	se	9	70.22
SO	10	68.18	ke	3	41.88	ny	6	39.53
mo	5	17.86	de	2	16.12	bp	1	10.53
sr	8	8.01						
AVERAG	E: 13	32.60						
	-	ATIVITY OF ME					_	
		of estimated	-	-	=	-		
Series		RM	Series			Series	Index	RM
SO	10	0.00	se	9	0.00	pe	7	0.00
ny	6	0.00	ke	3	0.00	mi	4	0.07
sr	8	1.00	mo	5	1.00	de	2	1.00
bp	1	1.00						
AVERAG	Е:	0.41						

Figure 10.b, Verification Results for Meta Data at the actual stage of Homogenization (MASHVERO.RES, ordered statistics)

VII. HOMOGENIZATION OF DAILY DATA

MATHEMATICAL BASIS (draft version)

Only the additive model is presented that is appropriate for temperature, pressure etc. elements.

Relation of daily and monthly homogenization

Alternative possibilities

- To use the detected monthly inhomogeneities directly for daily data homogenization

- Direct methods for daily data homogenization

Problems

- The direct use of the detected monthly inhomogeneities is probably not sufficient.

 Direct methods for daily data homogenization is probably not enough efficient thinking of the larger variability (less signal to noise ratio).

The Question

How can we use the valuable information of detected monthly inhomogeneities for daily data homogenization?

Additive model for daily values (e.g. temperature)

 $X^{st}(y,m,d) = \mu(y,m,d) + \mu_0^{st}(m,d) + IH^{st}(y,m,d) + \varepsilon^{st}(y,m,d)$

 μ : climate change signal, μ_0 : spatial expected value,

IH : inhomogeneity, ε : normal noise

st: station, m: month, y: year, d: day

Additive model for monthly means

 $X_m^{st}(y) = \mu_m(y) + \mu_{0m}^{st} + IH_m^{st}(y) + \varepsilon_m^{st}(y)$ $IH_m^{st}(y) = \overline{IH^{st}(y,m)}: \text{ inhomogeneity (break points and shifts)}$

<u>We have:</u> estimated monthly inhomogeneities: $I\hat{H}_{m}^{st}(y)$

Valuable information! : $\overline{IH^{st}}(y,m) = IH_m^{st}(y)$ But maybe a problem of direct use: the smoothness

Question:

Smooth estimation $I\hat{H}^{st}(y,m,d)$ for daily inhomogeneities by using the estimated monthly inhomogeneities $I\hat{H}^{st}_m(y)$?

Possible condition for daily estimation $I\hat{H}^{st}(y,m,d)$: Smoothness and condition for mean: $I\hat{H}^{st}(y,m) = I\hat{H}^{st}_m(y)$ Maybe a problem: too strong inhomogeneities can be obtained.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	57

Other train of thought

Not to forget: the monthly values $I\hat{H}_{m}^{st}(y)$ are only estimations, stochastic variables. To know the real $IH_{m}^{st}(y)$ is impossible. Consequently the monthly estimations $I\hat{H}_{m}^{st}(y)$ may be modified. But the modification must be controlled.

The Essence of Procedure

- i, Smooth estimation for daily inhomogeneities with a not too strong condition e.g.: $\exists d_0 : I\hat{H}^{st}(y, m, d_0) = I\hat{H}^{st}_m(y)$
- ii, Test of hypothesis to control the new monthly estimations: $I\widetilde{H}_{m}^{st}(y) := \overline{I\widehat{H}^{st}}(y,m)$

The MASH Procedure for Daily Data

- 1. Monthly means $X_m^{st}(y)$ from daily data $X^{st}(y,m,d)$.
- 2. MASH homogenization procedure for monthly series $X_m^{st}(y)$, estimation of monthly inhomogeneities: $I\hat{H}_m^{st}(y)$
- 3. On the basis of estimated monthly inhomogeneities $I\hat{H}_{m}^{st}(y)$, smooth estimation for daily inhomogeneities: $I\hat{H}^{st}(y,m,d)$.
- 4. Homogenization of daily data:

 $\widetilde{X}^{st}(y,m,d) = X^{st}(y,m,d) - I\hat{H}^{st}(y,m,d).$

- 5. Qulity Control for homogenized daily data $\widetilde{X}^{st}(y, m, d)$.
- 6. Missing daily data completion.
- 7. Monthly means $\widetilde{X}_{m}^{st}(y)$ from homogenized, controlled, completed daily data $\widetilde{X}^{st}(y, m, d)$.
- 8. Test of homogeneity for the new monthly series $\tilde{X}_{m}^{st}(y)$ by MASH. Repeating steps 2-8 with $\tilde{X}_{m}^{st}(y)$, $\tilde{X}^{st}(y,m,d)$ if it is necessary.

Interpolation technique for QC and Data Completion

Daily data for a given month:

 $X_{j}(t) \in N(E_{j}(t), D_{j}(t))$ (j = 1,..., M station; t = 1,...,30)

<u>Candidate data:</u> $X_{j}(t)$ <u>Reference data:</u> $X_{i}(t)(i \neq j)$

<u>Interpolation</u>: $\hat{X}_{j}(t) = w_{j0}(t) + \sum_{i \neq j} w_{ji}(t) X_{i}(t)$ where $\sum_{i \neq j} w_{ji}(t) = 1$.

<u>RMS Error and Representativity:</u> $RMSE_{j}(t)$, $REP_{j}(t) = 1 - \frac{RMSE_{j}(t)}{D_{j}(t)}$ The Optimum Interpolation Parameters $w_{j0}^{opt}(t)$, $w_{ji}^{opt}(t)$ ($i \neq j; t = 1,...,30$) minimizing $RMSE_{j}(t)$, are uniquely determined by the expectations, st. deviations and the correlations.

Problem: Estimation of daily statistical parameters.

Assumptions:

- i, $E_{j}(t) E_{i}(t) = e_{ji}$, $D_{j}(t)/D_{i}(t) = d_{ji}$, $(i \neq j; t = 1,...,30)$
- ii, $\operatorname{corr}(X_{j_1}(t_1), X_{j_2}(t_2)) = r_{j_1 j_2}^s \cdot r_{t_1 t_2}^T$ $(j_1, j_2 = 1, ..., M; t_1, t_2 = 1, ..., 30)$ $r_{j_1 j_2}^s$: correlation structure in space, $r_{t_1 t_2}^T$: correlation structure in time \Leftrightarrow Partial corr.: $\operatorname{corr}_{X_{j_1}(t_2)}(X_{j_1}(t_1), X_{j_2}(t_2)) = \operatorname{corr}_{X_{j_2}(t_1)}(X_{j_1}(t_1), X_{j_2}(t_2)) = 0$

Statement: If the assumptions i, ii, are fulfilled then

 $w_{j0}^{opt}(t) \equiv w_{j0}^{opt}, \ w_{ji}^{opt}(t) \equiv w_{ji}^{opt}, \ REP_{j}^{opt}(t) \equiv REP_{j}^{opt} \quad (t = 1,...,30) ,$ where $w_{j0}^{opt}, w_{ji}^{opt}, REP_{j}^{opt}$ are the optimal parameters of monthly interpolation: $\hat{\overline{X}}_{j}(t) = w_{j0} + \sum_{i \neq j} w_{ji} \overline{X}_{i}$ where $\sum_{i \neq j} w_{ji} = 1$.

Consequence

The monthly statistical parameters can be used for daily interpolation.

- i, Data Completion: $\hat{X}_{j}(t) = w_{j0}^{opt} + \sum_{i \neq j} w_{ji}^{opt} X_{i}(t)$
- ii, Quality Cotrol can be based on the standardized error:

$$Z_{j}(t) = \frac{X_{j}(t) - \hat{X}_{j}(t)}{D_{j}(t)(1 - REP_{j}^{opt})} \in N(0,1)$$

where w_{j0}^{opt} , w_{ji}^{opt} , REP_j^{opt} are the optimal parameters of monthly interpolation, and $D_j(t)$ is the daily standard deviation.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	59

Test of Hypothesis of the standardized error series Z(t)(t = 1,..,n)

If the data have good quality then $Z(t) \in N(0,1)$ (t = 1,..,n).

<u>But Problem:</u> $P\left(\max_{t} |Z(t)| < z\right)$ depends on the autocorrelation.

Statement:

i, If Z(t)(t = 1,..,n) is a Markov process, furthemore ii, and $P(|Z(t)| < z | |Z(t-1)| < z) \ge P(|Z(t)| < z)$ (t = 2,..,n),

then $P\left(\max_{t} |Z(t)| < z\right) \ge \prod_{t=1}^{n} P(|Z(t)| < z).$

Example:

If Z(t)(t = 1,..,n) is a normal AR(1) process then i, ii, are fulfilled.

Decision according to test of hypothesis

We have wrong data:

If $|Z(t)| > z_p$ where critical value z_p is defined by

the significance level p (e.g.: p=0.01) as,

$$\mathbb{P}\left(\max_{t} |Z(t)| < z_{p}\right) \geq \left(2\Phi(z_{p}) - 1\right)^{n} = 1 - p \quad ,$$

 $\Phi(z)$: standard normal distribution function.

Multiple QC for daily data

More standardized error series are examined without common reference series to separate the wrong data for the candidate station. Correction of the wrong data is based on confidence intervals.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	60

THE STRUCTURE OF MASHDAILY PROGRAM SYSTEM

Main Directory MASHv3.03:

Directory MASHDAILY:

- Subdirectory COSTHOMEINPUT

- Subdirectory MASHDAMO:
 - MASHDAMO.BAT
 - Subdirectory MASHFORMAT
 - Subdirectory MASHDAMOSUB
 - (do not use it including "subroutines")

- Subdirectory MASHDAILY:

- Subdirectory MASHDPAR

- Parametrization program: MASHDPAR.BAT
- Main Program: MASHD.BAT
- Subdirectory MASHDMANUQC ("manual" programs)
- Subdirectory MASHDMISSING ("manual" programs)
- Subdirectory MASHDSUB
- (do not use it including "subroutines")

Directory MASHMONTHLY (See Page 21)

MASHDAILY IN PRACTICE

I. Monthly Data from Daily Data in Subdirectory MASHDAILY\ MASHDAMO MASHDAMO.BAT (see page 57)

II. Homogenization of Monthly Series in Directory MASHMONTHLY\SAM

MASH homogenization procedure for monthly series, estimation of monthly inhomogeneities.

Input Files from MASHDAMO\MASHFORMAT: M{j} (j=1,....,12), FILASTAT.PAR (see p. 58; Copy batch File in Subdirectory MASHFORMAT: COPYSAMPAR.BAT)

III. Homogenization of Daily Data in Subdirectory MASHDAILY MASHDAILY

1. Parametrization in Subdirectory MASHDAILY\ MASHDAILY\ MASHDPAR: MASHDPAR.BAT (see pages 57-58)

2. Homogenization of Daily Data, Automatic Qulity Control for Homogenized Daily Data, Missing Daily Data Completion in Subdirectory MASHDAILY\ MASHDAILY: MASHD.BAT (see pages 58-59)

3. Possibility for Manual Program Procedures in MASHDAILY (p. 59):

Quality Control in MASHDMANUQC; Missing data completion in MASHDMISSING

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	61

THE MAIN PROGRAM and I/O FILES in Subdirectory MASHDAMO

EXECUTIVE FILE: MASHDAMO.BAT

INPUT:

Original Daily Data: **DAILY.DAT** Maximal number of stations: 500 Maximal number of years: 200 Format of Data File: row 1: names of stations (obligatory!), Format: (2x,character*6)? column 1: date of year (I4) column 2: month (I2) column 3: day (I2) column i+3: series i. Data Format: F8.2 Mark of Missing Values: 9999.99

File of Filambda Station Coordinates: FILASTAT.PAR (see page 60)

Model: additive or multiplicative

RESULT OUTPUT FILES in MASHDAMO\MASHFORMAT:

(Input Files of MASHMONTHLY\SAM) Files of Monthly Series: **M**{**J**} (**J**=1,..,12) File of Filambda Station Coordinates: **FILASTAT.PAR**

RESULT OUTPUT FILES in MASHDAILY\MASHDPAR:

Original Daily Data: **DAILY.DAT** Files of Monthly Series: **M**{**J**} (**J**=1,..,12) File of Filambda Station Coordinates: **FILASTAT.PAR** Parameter File: **MASHDPAR.PAR**

THE MAIN PROGRAM and I/O FILES of Subdirectory MASHDAILY\ MASHDAILY\MASHDPAR

EXECUTIVE BATCH FILE: MASHDPAR.BAT

THE STEPS OF MASHDPAR.BAT: MASHDTRAN.EXE & MASHDTOP.EXE& MASHDTEXT.EXE

INPUT DATA FILES:

Result Files from MASHMONTHLY\SAM\SAMEND: Homogenized Monthly Series M{j}h (j=1,....,12) Monthly Inhomogeneities M{j}i (j=1,....,12) (Copy batch File in Subdirectory SAMEND: COPYMASHDPAR)

INPUT DATA FILES DAILY.DAT, M{J} (J=1,..,12), MASHDPAR.PAR, FILASTAT.PAR are written in by MASHDAMO.BAT

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	62

OUTPUT FILES written in Directory MASHDAILY\MASHDAILY: MASHDPAR.PAR, FILASTAT.PAR, REFERENCE.PAR, DAILY.DAT, M{j} (j=1,....,12), M{j}h (j=1,....,12), M{j}i (j=1,....,12) <u>Work and Parameter Files:</u> DMP{j}.PAR (j=1,....,6), M{j}h.tr (j=1,....,12)

THE MAIN PROGRAM and I/O FILES of Subdirectory MASHDAILY\ MASHDAILY

EXECUTIVE BATCH FILE: MASHD.BAT

INPUT DATA FILES are written in by MASHDPAR.BAT

RESULT OUTPUT FILES:

Homogenized, Controlled and Completed daily Data: DAILYHOMQC.DAT

Homogenized and Completed daily Data (without QC): DAILYHOM.DAT

Daily Inhomogeneities: DAILYINHOM.DAT

Result of Quality Control: ERROR.RES

THE STEPS OF MASHD.BAT:

1. STAT1.EXE: Input: MASHDPAR.PAR, M{j}h (j=1,....,12), FILASTAT.PAR <u>Output:</u> STAT1 $\{j\}$.PAR (j=1,...,12) 2. DMINHOM1.EXE: Input: MASHDPAR.PAR, M{j} (j=1,...,12), M{j}i (j=1,...,12) Output: DMSTAT.RES, DM{j}i.PAR (j=1,....,12) 3. DMINHOM2.EXE: Input: MASHDPAR.PAR, M{j} (j=1,...,12), M{j}i (j=1,...,12) <u>Output:</u> DM{j}i (j=1,....,12) 4. DMINHOM3.EXE: Input: MASHDPAR.PAR, DM{j}i (j=1,...,12) Output: DM{j}i (j=1,...,12) (Daily inhomogeneities in 12 files) 5. DMDATA.EXE: Input: MASHDPAR.PAR, DAILY.DAT Output: DM{j} (j=1,...,12) (Original daily data in 12 files) 6. DMINHCORR.EXE: Input: MASHDPAR.PAR, $DM{i}i$.PAR (j=1,...,12), $DM{i}i$ (j=1,...,12), $DM{j} (j=1,...,12)$ Output: $DM{i}h (i=1,...,12)$ (Homogenized daily data in 12 files), $DM{i}d(i=1,...,12)$ (Daily st. deviations in 12 files)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	63

7. QC.EXE

<u>Input:</u> MASHDPAR.PAR, REFERENCE.PAR, STAT1{j}.PAR (j=1,....,12), DM{j}i (j=1,....,12), DM{j}h (j=1,....,12), DM{j}d (j=1,....,12), DM{j} (j=1,....,12), M{j}i (j=1,....,12) <u>Output:</u> DM{j}hc (j=1,....,12) (Homogenized, controlled daily data in 12 files)

ERROR.RES

Work and Parameter Files: QC1.PAR, QC2.PAR, ERR{j} (j=1,...,12), ERROR.PAR

8. MISSING.EXE: <u>Input:</u> MASHDPAR.PAR, FILASTAT.PAR, DM{j}hc (j=1,....,12), STAT1{j}.PAR (i=1,...12) <u>Output:</u> DM{j}hcm (j=1,....,12) (Homog., controlled, completed daily data in 12 files) <u>Work and Parameter Files:</u> MISSING1.PAR, MISSING2.PAR

9. DAILYEND.EXE: <u>Input:</u> MASHDPAR.PAR, DM{j}hcm (j=1,....,12), DM{j}i (j=1,....,12) <u>Output:</u> DAILYHOMQC.DAT, DAILYHOM.DAT, DAILYINHOM.DAT

MANUAL PROGRAM PROCEDURES in Subdirectory MASHDAILY\ MASHDAILY

1. Quality Control programs in subdirectory MASHDMANUQC

1.1 Selection of errors resulted by automatic QC

ERRORSELECT.BAT: Selection Procedure

Input: ERROR.RES being result of automatic QC, and a critical value for errors

Output: ERRORSELECT.RES

1.2 Correction of the homogenized daily data series

DAILYHOMQCM.BAT: Manual Correction of DAILYHOM.DAT

Input: DAILYHOM.DAT and

optionally **ERRORSELECT.RES** or typing errors

Output: DAILYHOMQCM.BAT

2. Missing data completion in subdirectory MASHDMISSING

MASHDMISS.BAT: Missing Data Completion Procedure

Input File: DAILYMISS.DAT with missing values (9999.99)

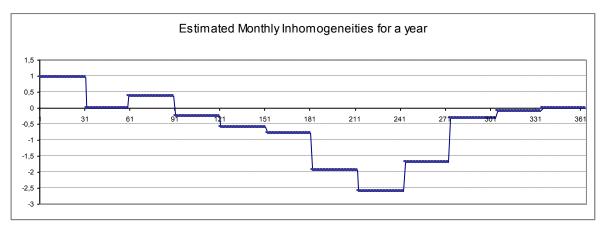
Output File: DAILYCOMPL.DAT with completed series

Remark: It is also a possibility to modify the result of automatic QC.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	64

EXAMPLE FOR APPLICATION OF MASHDAILY SYSTEM

Examined Data: DAILY.DAT


Daily temperature series (1901-1930), 10 Stations in Hungary.

Temperature element: (max+min)/2

Model: additive

File of Filambda Station Coordinates: FILASTAT.PAR

index	lambda(x)	fi(y)
1	18.65308760	47.18486400
2	20.62684630	46.57159040
3	17.09815790	47.05921170
4	20.14969640	47.21730420
5	17.39957430	47.90058140
6	20.80181500	46.85120390
7	16.83021930	47.91734310
8	19.18956180	45.94506840
9	16.73989490	47.59620290
10	19.86032100	46.45614240

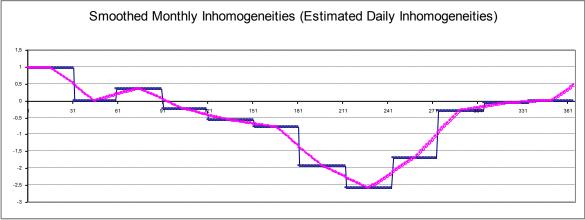


Figure 1. Example for smoothing of Monthly Ihomogeneities

CARPATCLIM <i>Report</i>	Date 01/03 ,	-	Versi <i>fin</i> e	0	1
Detected errors in	September	1903 at St	ation 10 (ERF	OR.RES)	
st1 st2	st3 st4	st5 st6	st7 st8 st	9 st10	
1903 9 1 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.	0 -3.4	
1903 9 2 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.	0 -2.2	
1903 9 3 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.	0 -3.1	
1903 9 4 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.	0 -5.0	
1903 9 5 0.0 0.0	0.0 0.0	0.0 0.0		0 -2.6	
1903 9 6 0.0 0.0	0.0 0.0	0.0 0.0		0 -2.7	
1903 9 7 0.0 0.0	0.0 0.0	0.0 0.0		0 -4.9	
1903 9 8 0.0 0.0	0.0 0.0	0.0 0.0		0 -2.9	
1903 910 0.0 0.0	0.0 0.0	0.0 0.0		0 -1.8	
1903 911 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.	0 -5.5	
Original Data					
1903 9 1 20.5 17.1					
1903 9 2 19.8 17.9					
1903 9 3 19.1 17.3					
1903 9 4 19.7 17.5					
1903 9 5 20.3 17.8					
1903 9 6 20.9 18.7					
1903 9 7 22.9 21.5					
1903 9 8 22.5 20.9					
1903 910 17.7 18.4					
1903 911 16.5 13.7		14.5 13.5	13.1 18.8 14.	1 6.2	
Longterm means in a	-			7 1 6 6	
16./ 15.9	10.2 14.9	12.9 12.5	14.6 17.0 14.	/ 10.0	

Figure 2.	Part	Results	of	Quality	Control
-----------	------	---------	----	---------	---------

TEST STATISTICS for ANNUAL SERIES (OUTPUT of MASH)

Critical value (significance level 0.05): 20.53 1. Test Statistics Before Monthly Homogenization TSBM Station TSBM Station TSBM Station 4 317.85 6 241.41 2 155.04 9 127.66 7 91.66 10 68.36 1 62.55 8 61.84 5 42.06 AVERAGE : 118.42 3 15.82 2. Test Statistics After Monthly Homogenization Station TSAM Station TSAM Station TSAM 25.11 7 28.64 5 9 22.73 18.12 4 18.52 8 15.26 1 14.96 2 14.82 10 12.41 6 18.08 10.26 AVERAGE : 3 3. Test Statistics After Monthly&Daily Homogenization TSAMD Station TSAMD Station Station TSAMD 7 28.89 5 25.40 25.06 2 21.98 9 17.60 4 16.52 1 8 15.23 6 14.66 3 9.69 9.00 AVERAGE : 18.40 10

Figure 3. Verification Results for the Annual Series (MASHVERI.RES)

CARPATCLIN Report	Λ	Date 01/03/2 0	013	Version <i>final</i>	Page 66
AVERAGED	TEST STATIS	STICS FOR MC	NTHLY SERIES	(10 Stations)	
Average o	f Test Stat	istics Befo	ore Monthly H	omogenization: T	SBM
Average o	f Test Stat	istics Afte	er Monthly Ho	mogenization: TS	AM
Average o	f Test Stat	istics Afte	er Monthly&Da	ily Homogenizati	on: TSAMD
MONTH	TSBM	TSAM	TSAMD		
1	28.5	12.0	12.1		
2	21.1	16.6	17.0		
3	41.2	24.0	22.4		
4	73.7	17.5	17.8		
5	82.1	15.7	13.4		
6	100.7	14.7	12.5		
7	84.5	16.1	14.2		
8	61.7	16.0	14.3		
9	131.4	12.9	13.1		
10	56.3	14.6	16.0		
11	38.9	10.4	11.2		
12	34.5	18.7	20.4		
SP	90.6	19.9	20.2		
SU	92.6	18.7	17.2		
AU	101.3	17.1	19.6		
WI	32.1	18.3	16.6		
Y	118.4	18.1	18.4		

Figure 4. Average of Verification Results for the Monthly Series

References

Szentimrey, T., 1994: "Statistical problems connected with the homogenization of climatic time series", Proceedings of the European Workshop on Climate Variations, Kirkkonummi, Finland, Publications of the Academy of Finland, 3/94, pp. 330-339.

Szentimrey, T., 1995: "Statistical methods for detection of inhomogeneities", Proceedings of the Regional Workshop on Climate Variability and Climate Change Vulnerability and Adaptation, Prague, pp. 293-298.

Szentimrey, T., 1995: "General problems of the estimation of inhomogeneities, optimal weighting of the reference stations", Proceedings of the 6^h International Meeting on Statistical Climatology, Galway, Ireland, pp. 629-631.

Szentimrey, T., 1996: "Some statistical problems of homogenization: break points detection, weighting of reference series", Proceedings of the 13th Conference on Probability and Statistics in the Atmospheric Sciences, San Francisco, California, pp. 365-368.

Szentimrey, T., 1997: "Statistical procedure for joint homogenization of climatic time series", Proceedings of the Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary, pp. 47-62.

Peterson, T.C., Easterling, D.R., Karl, T.R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Forland, E.J., Hanssen-Bauer, I., Alexanderson, H., Jones, P. and Parker D., 1998: "Homogeneity adjustments of *in situ* atmospheric climata data: a review", International Journal of Climatology, 18: 1493-1517

Szentimrey, T., 1998: "MASHv1.03", Guide for Software Package, Hungarian Meteorological Service, Budapest, Hungary, p. 25.

Auer, I., Böhm, R., 1998: "Endbericht des Projects ALOCLIM, Teil I-II", Zentralanstalt für Meteorologie und Geodynamik, Wien.

Szentimrey, T., 1999: "Multiple Analysis of Series for Homogenization (MASH)", Proceedings of the Second Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary; WMO, WCDMP-No. 41, pp. 27-46.

Szentimrey, T., 2000: "Multiple Analysis of Series for Homogenization (MASH). Seasonal application of MASH (SAM), Automatic using of Meta Data", Proceedings of the Third Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary, Home page:<u>http://omsz.met.hu/ismeretterjesztes/rendezvenyek/rendezveny_hu.html</u>

Auer, I., Böhm, R,. Schöner, W., 2001: "Austrian Long-Term Climate (ALOCLIM) 1767-2000, Multiple instrumental climate time series from Central Europe", Österreichische Beiträge zu Meteorologie und

Szentimrey, T., 2002: "Statistical problems connected with the spatial interpolation of climatic time series.", Home page:http://www.knmi.nl/samenw/cost719/documents/Szentimrey.pdf

Szentimrey, T., 2003: "Homogenization software MASHv2.03", Home page:<u>http://www.wmo.ch/web/wcp/clips2001/html/MASH_software.htm</u>

Geophysik, Heft 25, Central Institute for Meteorology and Geodynamics, Vienna.

Szentimrey, T., 2004: "Something like an Introduction", Proceedings of the Fourth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary; WMO, WCDMP-No. 56, pp. 5-16.

Szentimrey, T., 2004: "Multiple Analysis of Series for Homogenization (MASH); Verification procedure for homogenized time series", Proceedings of the Fourth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary; WMO, WCDMP-No. 56, pp. 193-201.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	68

Szentimrey, T., Bihari, Z., 2007: "Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis)", Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2004, COST Action 719, COST Office, 2007, pp. 17-27

Szentimrey, T., 2007: "Manual of homogenization software MASHv3.02", Hungarian Meteorological Service, p. 61.

Szentimrey, T., 2007: "Manual of interpolation software MISHv1.02", Hungarian Meteorological Service, p. 32

Szentimrey, T., 2008: "An overview on the main methodological questions of homogenization", Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 2006; WCDMP-No. 71, WMO/TD-NO. 1493, 2008, pp. 1-6.

Szentimrey, T., 2008: "Development of MASH homogenization procedure for daily data", Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 2006; WCDMP-No. 71, WMO/TD-NO. 1493, 2008, pp. 123-130.

Szentimrey, T., Bihari, Z., Lakatos, M., 2010: "Quality control procedures in MISH-MASH systems", European Conference on Applied Climatology (ECAC), 13-17 September 2010, Zürich, Switzerland

Szentimrey, T., Lakatos, M., Bihari, Z., 2010: "Methodological questions of data series comparison for homogenization", 11th International Meeting of Statistical Climatology, 12-16 July 2010, Edinburgh, Scotland

Szentimrey, T., 2011: "Methodological questions of series comparison", Proceedings of COST-ES0601 (HOME) Action Management Committee and Working Groups and Sixth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, 26-30 May 2008. WCDMP-No. 76, WMO/TD-NO. 1576, 2011, pp. 1-7.

Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S, 2011: "Homogenization of daily data series for extreme climate indices calculation, Proceedings of COST-ES0601 (HOME) Action Management Committee and Working Groups and Sixth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, 26-30 May 2008. WCDMP-No. 76, WMO/TD-NO. 1576, 2011, pp. 100-109.

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	<i>69</i>	

PREFACE of Version MISHv1.02

The present version MISHv1.02 is a continued development of the first version MISHv1.01. The new parts built in the interpolation subsystem of MISH procedure are as follows:

- Data series complementing that is missing value interpolation, completion for monthly or daily station data series.
- Interpolation, gridding of monthly or daily station data series for given predictand locations. In case of gridding the predictand locations are the nodes of a relatively dense grid.

The potential interpolation area was also increased. At the present version the maximum number of the rows of the half minutes grid that covers the interpolation area is 600 instead of the earlier 400 ones. This means area with 150 000-300 000 km² in Europe.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	70

PREFACE of Version MISHv1.01

The MISH method for the spatial interpolation of surface meteorological elements was developed at the Hungarian Meteorological Service. This is a meteorological system not only in respect of the aim but in respect of the tools as well. It means that using all the valuable meteorological information – climate and supplementary model or background information – is intended. For that purpose developing an adequate mathematical background was also necessary of course.

In the practice many kinds of interpolation methods exist therefore the question is the difference between them. According to the interpolation problem the unknown predictand value is estimated by use of the known predictor values. The type of the adequate interpolation formula depends on the probability distribution of the meteorological elements! Additive formula is appropriate for normal distribution (e.g. temperature) while some multiplicative formula can be applied for quasi lognormal distribution (e.g. precipitation). The expected interpolation error depends on certain interpolation parameters as for example the weighting factors. The optimum interpolation parameters minimize the expected interpolation error and these parameters are certain known functions of different climate statistical parameters e.g. expectations, deviations and correlations. Consequently the modelling of the climate statistical parameters is a key issue to the interpolation of meteorological elements.

The various geostatistical kriging methods applied in GIS are also based on the above mathematical theory. However these methods use only a single realization in time for modelling of the necessary statistical parameters that is neglecting the long data series which series form a sample in time and space alike. The long data series is such a speciality of the meteorology that makes possible to model efficiently the climate statistical parameters in question!

The MISH method has been developed according to the above basic principles. The main steps of the interpolation procedure are as follows.

- To model the climate statistical parameters by using long homogenized data series.
- To calculate the modelled optimum interpolation parameters which are certain known functions of the modelled climate statistical parameters.
- To substitute the modelled optimum interpolation parameters and the predictor values into the interpolation formula.

The software MISH consists of two units that are the modelling and the interpolation systems. The interpolation system can be operated on the results of the modelling system.

Modelling System for climate statistical (deterministic and stochastic) parameters:

- Based on long homogenized monthly series and supplementary model variables. The deterministic model variables may be as height, topography, distance from the sea etc..
- Benchmark study, cross-validation test for representativity.

Modelling procedure must be executed only once before the interpolation applications!
 Interpolation System:

- Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and interpolation formula can be used depending on the climate elements.
- Daily, monthly values and many years' means can be interpolated.
- Few predictors are also sufficient for the interpolation and no problem if the greater part of daily precipitation predictors is equal to 0.
- The representativity values are modelled too.
- Capability for application of supplementary background information (stochastic variables) e.g. satellite, radar, forecast data.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	71

I. MATHEMATICAL BACKGROUND¹

1. INTRODUCTION

The MISH method was developed at the Hungarian Meteorological Service for the spatial interpolation of surface meteorological elements. This is a meteorological system not only in respect of the aim but in respect of the tools as well. It means that using all the valuable meteorological information – e.g. climate and possible background information – is required. For that purpose an adequate mathematical background is also necessary of course.

2. SURFACE METEOROLOGICAL INFORMATION

The two basic types of information for the surface meteorological values are data measured at the observation stations and certain background information given at the nodes of a relatively dense grid. Fig. 1. is an illustration of the different kinds of utilized information.

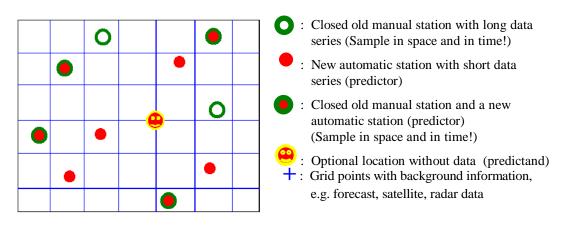


Figure 1. Types of information for the surface meteorological values

The long data series can be considered as a sample in space and time for the climate and this sample implies valuable information for the interpolation as well.

¹ Szentimrey, T., Bihari, Z., 2007: "Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis)", Proceedings of the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, COST Action 719, COST Office, 2007, pp. 17-27

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	72

3. SPATIAL INTERPOLATION METHODS

In practice many kinds of interpolation methods exist therefore the question is the difference between them. According to the interpolation problem the unknown predictand $Z(\mathbf{s}_0, t)$ is estimated by use of the known predictors $Z(\mathbf{s}_i, t)$ (i = 1, ..., M) where the location vectors \mathbf{s} are the elements of the given space domain D and t is the time. The type of the adequate interpolation formula depends on the probability distribution of the meteorological element.

3.1 Additive Interpolation Formula

Assuming normal distribution (e.g. temperature) the additive formula is adequate, that is, the estimate may be written as

$$\hat{Z}(\mathbf{s}_{0},t) = w_{0} + \sum_{i=1}^{M} w_{i} \cdot Z(\mathbf{s}_{i},t) \quad \text{where} \quad \sum_{i=1}^{M} w_{i} = 1, \ w_{i} \ge 0 \quad (i = 1,...,M), \quad (1)$$

and w_0 , w_i (i = 1, ..., M) are the interpolation parameters.

Root Mean Square Interpolation Error and Representativity:

$$ERR(\mathbf{s}_0) = \sqrt{E\left(\left(Z(\mathbf{s}_0, t) - \hat{Z}(\mathbf{s}_0, t)\right)^2\right)} , \quad REP(\mathbf{s}_0) = 1 - \frac{ERR(\mathbf{s}_0)}{D(\mathbf{s}_0)}, \quad \text{where} \qquad \text{E is the}$$

expectation and $D(\mathbf{s}_0)$ is the standard deviation of the predictand.

The local statistical parameters (expectations, standard deviations) and the stochastic connections (correlations), which are climate statistical parameters in meteorology, uniquely determine the optimum interpolation parameters that minimize the interpolation error. The various geostatistical kriging methods applied in GIS are also based on the above theory. However, these methods use only a single realisation in time for modelling statistical parameters and neglect the long data series which form a sample in time and space as well, while the sample makes it possible to model the climate statistical parameters in question.

3.2 Multiplicative Interpolation Formula

Assuming quasi-lognormal distribution (e.g. precipitation sum) the multiplicative formula is adequate, that is, the estimate may be written as

$$\hat{Z}(\mathbf{s}_{0},t) = \mathcal{G} \cdot \left(\prod_{q_{i}: Z(\mathbf{s}_{i},t) \ge \mathcal{G}} \left(\frac{q_{i} \cdot Z(\mathbf{s}_{i},t)}{\mathcal{G}}\right)^{W_{i}}\right) \cdot \left(\sum_{q_{i}: Z(\mathbf{s}_{i},t) \ge \mathcal{G}} w_{i} + \sum_{q_{i}: Z(\mathbf{s}_{i},t) < \mathcal{G}} w_{i} \cdot \left(\frac{q_{i} \cdot Z(\mathbf{s}_{i},t)}{\mathcal{G}}\right)\right)$$

where $\mathcal{G} > 0$, $q_{i} > 0$, $\sum_{i=1}^{M} w_{i} = 1$ and $w_{i} \ge 0$ $(i = 1, ..., M)$,

and q_i , w_i (i = 1, ..., M) are the interpolation parameters.

Similarly to the additive case above the optimum interpolation parameters are uniquely determined by certain climate statistical parameters such as some local statistical parameters and stochastic connections.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	73

4. POSSIBLE CONNECTION OF DIFFERENT TOPICS AND SYSTEMS

As we have seen modelling of the climate statistical parameters is a key issue to the interpolation of meteorological elements and that modelling can be based on the long data series. Before detailing the problem of modelling and interpolation we present a block diagram to illustrate the possible connection between various important meteorological topics.

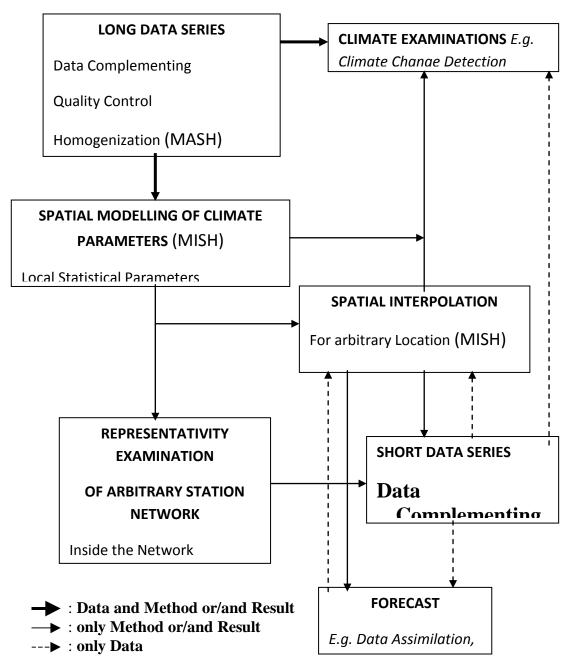


Figure 2. Connection of topics and systems

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	74

5. SPATIAL INTERPOLATION WITH OPTIMUM PARAMETERS

If we want to obtain appropriate modeled interpolation parameters first we have to examine the optimum interpolation parameters, which can be written as certain functions of the climate statistical parameters. In this paper only the interpolation by additive formula (chapter 3.1) is detailed.

Notation:

 $Z(\mathbf{s}_0, t)$: predictand, $Z(\mathbf{s}_i, t)$ (i = 1, ..., M): predictors

 $ERR(\mathbf{s}_0)$: root mean square interpolation error

 $E(\mathbf{s})$: expectation, $D(\mathbf{s})$: standard deviation, $r(\mathbf{s}_1, \mathbf{s}_2)$: correlation

where location vectors \mathbf{s} are the elements of the given space domain D.

Optimum Interpolation Error and Representativity:

$$ERR_{OP}(\mathbf{s}_0) = \text{minimum } ERR(\mathbf{s}_0)$$
, $REP_{OP}(\mathbf{s}_0) = 1 - \frac{ERR_{OP}(\mathbf{s}_0)}{D(\mathbf{s}_0)}$

The Structure of the Optimum Interpolation Parameters:

The minimum error can be obtained by the optimum interpolation parameters.

The optimum constant w_0 depends on the differences $E(\mathbf{s}_0) - E(\mathbf{s}_i)$ (i = 1,...,M), furthermore the optimum weighing factors w_i (i = 1,..,M) as well as the optimum representativity $REP_{OP}(\mathbf{s}_0)$ depend on the ratios $D(\mathbf{s}_0)/D(\mathbf{s}_i)$ (i = 1,..,M) and the correlations $r(\mathbf{s}_i, \mathbf{s}_j)$ (i, j = 0,...,M). Thus the optimum interpolation parameters and the optimum representativity depend only on the correlation structure and the spatial variability of local statistical parameters. Therefore the monthly interpolation parameters are applicable for the interpolation of daily values too.

<u>Remark</u>: It can be proved that $w_0 = \sum_{i=1}^{M} w_i (E(\mathbf{s}_0) - E(\mathbf{s}_i))$ and the vector of nonzero weighing

factors is $\mathbf{w} = \frac{\mathbf{C}_{pr}^{-1}\mathbf{1}}{\mathbf{1}^{\mathrm{T}}\mathbf{C}_{pr}^{-1}\mathbf{1}} + \left(\mathbf{C}_{pr}^{-1} - \frac{\mathbf{C}_{pr}^{-1}\mathbf{1}\mathbf{1}^{\mathrm{T}}\mathbf{C}_{pr}^{-1}}{\mathbf{1}^{\mathrm{T}}\mathbf{C}_{pr}^{-1}\mathbf{1}}\right)\mathbf{c}_{0,pr}$, where $\mathbf{c}_{0,pr}$ and \mathbf{C}_{pr} are the proper

predictand-predictors covariance vector and predictors-predictors covariance matrix respectively and vector 1 is identically one.

6. SPATIAL MODELLING OF CLIMATE PARAMETERS

6.1 Known Climate Statistical Parameters for Modelling

The long data series can be used to model the climate statistical parameters. If the stations \mathbf{S}_j (j = 1,...,N) ($\mathbf{S} \in D$) have long monthly series then the local parameters $E(\mathbf{S}_j), D(\mathbf{S}_j)$ (j = 1,...,N) as well as the correlations $r(\mathbf{S}_{j1}, \mathbf{S}_{j2})$ ($j_1, j_2 = 1,...,N$) can be estimated statistically. Consequently these parameters are essentially known and provide a lot of information for modelling. It is again to be remarked that the geostatistical methods applied in GIS neglect the long data series which leads to a loss of information.

6.2 Neighbourhood Modelling of Climate Statistical Parameters

The known climate statistical parameters can be used for modelling the correlation structure as well as the spatial variability of local statistical parameters. The basic principle of the

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	75

neighbourhood modelling is as follows. Let $P(\mathbf{s})$, $Q(\mathbf{s})$, $\tilde{r}_{\mathbf{s}_0}(\mathbf{s}_1, \mathbf{s}_2)$ $(\mathbf{s}, \mathbf{s}_0, \mathbf{s}_1, \mathbf{s}_2 \in D)$ be certain model functions depending on different model variables with the following properties:

- (a) $P(\mathbf{S}_{j1}) P(\mathbf{S}_{j2}) \approx E(\mathbf{S}_{j1}) E(\mathbf{S}_{j2})$, if $\|\mathbf{S}_{j1} \mathbf{S}_{j2}\| < d_0$ (b) $\frac{Q(\mathbf{S}_{j1})}{Q(\mathbf{S}_{j2})} \approx \frac{D(\mathbf{S}_{j1})}{D(\mathbf{S}_{j2})}$, if $\|\mathbf{S}_{j1} - \mathbf{S}_{j2}\| < d_0$
- (c) $\widetilde{r}_{\mathbf{S}_0}(\mathbf{S}_{j1}, \mathbf{S}_{j2}) \approx r(\mathbf{S}_{j1}, \mathbf{S}_{j2})$, if $\|\mathbf{S}_{j1} \mathbf{s}_0\| < d_0$ and $\|\mathbf{S}_{j2} \mathbf{s}_0\| < d_0$

The model variables may be height, topography (e.g. AURELHY principal components), distance from the sea etc..

7. SPATIAL INTERPOLATION WITH MODELLED PARAMETERS

According to the chapters 5., 6.2 both the modelled weighting factors $\widetilde{\mathbf{w}} = [\widetilde{w}_1, ..., \widetilde{w}_M]^T$ and the modelled optimum representativity $REP_{OP}^{\text{mod}}(\mathbf{s}_0)$ can be derived from the values of $\frac{Q(\mathbf{s}_0)}{Q(\mathbf{s}_i)}$ (i = 1, ..., M), $\widetilde{r}_{\mathbf{s}_0}(\mathbf{s}_i, \mathbf{s}_j)$ (i, j = 0, ..., M). Hence, Interpolation with Modelled Parameters: $\widehat{Z}(\mathbf{s}_0, t) = \widetilde{w}_0 + \sum_{i=1}^M \widetilde{w}_i Z(\mathbf{s}_i, t) = \sum_{i=1}^M \widetilde{w}_i (P(\mathbf{s}_0) - P(\mathbf{s}_i)) + \sum_{i=1}^M \widetilde{w}_i Z(\mathbf{s}_i, t)$. Furthermore, Representativity of the Interpolation with Modelled Parameters: $REP_{MP}(\mathbf{s}_0) = 1 - \frac{ERR_{MP}(\mathbf{s}_0)}{D(\mathbf{s}_0)}$, where $ERR_{MP}(\mathbf{s}_0)$ is the root mean square inter-polation error

obtained by the modelled parameters.

To model the local statistical parameters we can follow a similar approach, that is,

Modelling of Monthly Expectation (using additive interpolation):

$$E^{\text{mod}}(\mathbf{s}_0) = \sum_{k=1}^{K} \widetilde{w}_k \left(P(\mathbf{s}_0) - P(\mathbf{S}_{jk}) \right) + \sum_{k=1}^{K} \widetilde{w}_k E(\mathbf{S}_{jk})$$

Modelling of Monthly Standard Deviation (using multiplicative interpolation):

$$D^{\text{mod}}(\mathbf{s}_0) = \prod_{k=1}^{K} \left(\frac{Q(\mathbf{s}_0)}{Q(\mathbf{s}_{jk})} \cdot D(\mathbf{s}_{jk}) \right)^{W}$$

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	76

Examples in Hungary

Hungary: 0.5'x0.5' resolution, approx. 300 000 grid points.

Example 1

Monthly mean temperature: 57 stations with long homogenized data series (1971-2000). One model for each grid point taking into account the nearest 10 stations. Examination of approx. 600 combinations of stations.

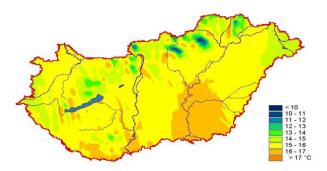


Figure 3. Modelled expectation of monthly mean temperature in September

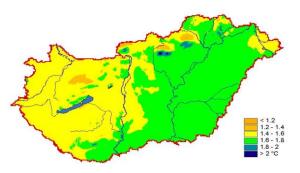


Figure 4. Modelled standard deviation of monthly mean temperature in September

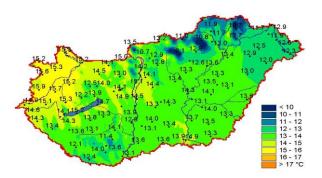


Figure 5. Interpolation of daily mean temperature on 29 September 2004 based on 100 observations

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	77

Example 2

Monthly precipitation sum: 500 stations with long homogenized data series (1971-2000). One model for each grid point taking into account the nearest 30 stations. Examination of approx. 18 000 combinations of stations.

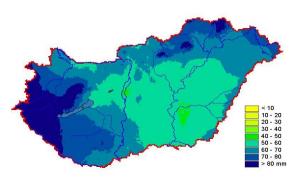


Figure o. мощенец ехрестацон ог шоншту рессирнацон sum и зиту

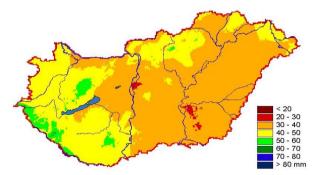


Figure 7. Modelled standard deviation of monthly precipitation sum in July

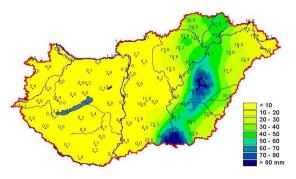


Figure 8. Interpolation of daily precipitation sum on 27 July 2004 based on 103 observations

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	78

8. BENCHMARK STUDY TO TEST THE MODELLING RESULTS

The cross-validation test is a possibility to evaluate the interpolation methods. That is interpolation between the station data series and examination of the root mean square interpolation errors $ERR(\mathbf{S}_i)$ or the representativity $REP(\mathbf{S}_i)$ (j = 1,..,N).

In our case the interpolation with modelled parameters has been compared to the interpolation with optimum parameters. In Figures 9, 10 we show the mean monthly representativity values that were calculated for both the monthly mean temperature (based on 57 stations) and the monthly precipitation sum (based on 500 stations). For temperature the additive formula (chapter 3.1) while for precipitation the multiplicative formula (chapter 3.2) was applied. For the temperature the inverse distance method which has also an additive interpolation formula was applied too. The notations of the various representativity values are,

*REP*_{OP}: interpolation with optimum parameters,

 REP_{MP} : interpolation with modelled parameters,

*REP*_{*INV*}: inverse distance method.

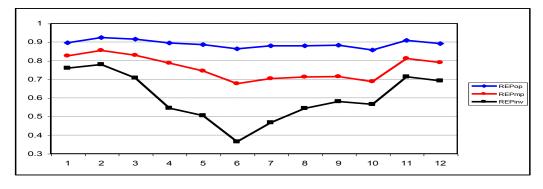


Figure 9. Mean monthly representativity values for monthly mean temperature, 57 stations

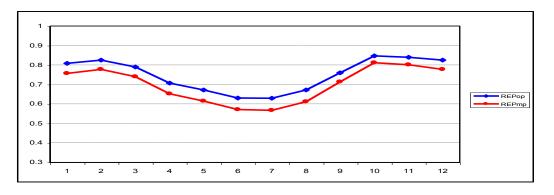


Figure 10. Mean monthly representativity values for monthly precipitation sum, 500 stations

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	<i>79</i>

9. MODELLING OF REPRESENTATIVITY REP_{MP}

We can also develop an interpolation procedure for modelling the interpolation error or the representativity. Let $REP_{OP}^{mod}(\mathbf{s}_0)$, $REP_{OP}^{mod}(\mathbf{S}_j)(j=1,...,N)$ be the modelled optimum representativity values according to chapter 7, where \mathbf{s}_0 is the predictand location, and \mathbf{S}_j (j=1,...,N) are the former station locations. More-over the representativity values $REP_{MP}(\mathbf{S}_j)(j=1,...,N)$ are known as a result of the benchmark study (see chapter 8). Then the representativity of the interpolation with modelled parameters can be interpolated as

$$REP_{MP}^{\text{mod}}(\mathbf{s}_{0}) = 1 - \prod_{k=1}^{K} \left(\frac{1 - REP_{MP}(\mathbf{S}_{jk})}{1 - REP_{OP}^{\text{mod}}(\mathbf{S}_{jk})} \cdot \left(1 - REP_{OP}^{\text{mod}}(\mathbf{s}_{0}) \right) \right)^{W}$$

The strength of representativity depends on the predictand-predictors system as well as the quality of modelling. Figures 11,12 are an illustration where the grid points are the predictand locations.

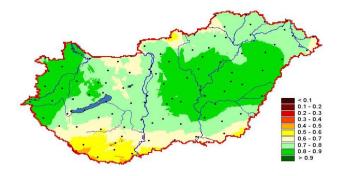


Figure 11. Modelled representativity values REP_{MP}^{moa} for mean temperature in September, the former 100 observing stations are the predictor locations



Figure 12. Modelled representativity values REP_{MP}^{mod} for precipitation sum in July, the former 103 observing stations are the predictor locations

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	80

10. INTERPOLATION WITH BACKGROUND INFORMATION

The background information e.g. forecast, satellite, radar data (see Fig. 1) can be efficiently used to decrease the interpolation error. In this paper only the interpolation based on additive model or normal distribution is presented.

Let us assume that $Z(\mathbf{s}_{j},t)(j=1,...,N)$ are the data measured at the observation stations, $Z(\mathbf{s}_{0},t)$ is the predictand and $Z(\mathbf{s}_{ji},t)(i=1,...,M)$ are the predictors where the location vectors \mathbf{s} are the elements of the given space domain D. Furthermore let $G(\mathbf{s},t)(\mathbf{s} \in D)$ be some background information given on a dense grid. The linear model of conditional expectation of $Z(\mathbf{s},t)$, given $G(\mathbf{s},t)$, is

 $\mathbf{E}(Z(\mathbf{s},t) | G(\mathbf{s},t)) = E(\mathbf{s}) + \gamma_0 + \gamma_1 \cdot (G(\mathbf{s},t) - E(\mathbf{s})) \quad , \ (\mathbf{s} \in D)$

where $E(\mathbf{s})$ is the expectation in space (chapter 5.). The unknown regression parameters γ_0, γ_1 and the correlation $R = \operatorname{corr}(Z(\mathbf{s}, t), G(\mathbf{s}, t))$ can be estimated taking int account the given $Z(\mathbf{s}_j, t), G(\mathbf{s}_j, t) (j = 1, ..., N)$ and the modelled expectations $E^{\operatorname{mod}}(\mathbf{s}_j) (j = 1, ..., N)$ formulated in chapter 7. According to chapter 7 again the interpolation without background information can be written as

$$\hat{Z}(\mathbf{s}_0,t) = \widetilde{w}_0 + \sum_{i=1}^M \widetilde{w}_{ji} \cdot Z(\mathbf{s}_{ji},t)$$

Applying the same interpolation formula for the background information, we have

$$\hat{G}(\mathbf{s}_0,t) = \widetilde{w}_0 + \sum_{i=1}^M \widetilde{w}_{ji} \cdot G(\mathbf{s}_{ji},t)$$

Finally, the formulas in case of using background information are as follows:

Interpolation:
$$\hat{Z}_{G}(\mathbf{s}_{0},t) = \hat{Z}(\mathbf{s}_{0},t) + \gamma_{1} \cdot \left(G(\mathbf{s}_{0},t) - \hat{G}(\mathbf{s}_{0},t)\right)$$

<u>Representativity:</u> $REP_{G,MP}^{\text{mod}}(\mathbf{s}_0) = REP_{MP}^{\text{mod}}(\mathbf{s}_0) + (1 - REP_{MP}^{\text{mod}}(\mathbf{s}_0)) \cdot (1 - \sqrt{1 - R^2})$ Figure 13 shows an example. The similarity to Figure 5 is a consequence of the weakness of

Figure 13 shows an example. The similarity to Figure 5 is a consequence of the correlation.

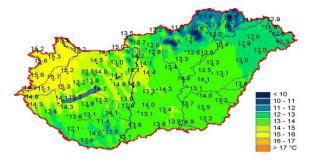


Figure 13. Interpolation of daily mean temperature on 29 September 2004 based on 100 observations and 24 hourly forecast as background information (correlation: *R*=0.48)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	81

11. SOFTWARE: MISHv1.01

We summarize briefly the most important facts about the developed software MISH. Essentially the system consists of two units that are the modelling and the interpolation systems. The interpolation system can be operated on the results of the modelling subsystem.

(a) Modelling Subsystem

- (1) Based on long homogenized monthly series.
- (2) Benchmark study for interpolation errors or representativity.
- (3) Modelling procedure must be executed only once before the interpolation applications.

(b) Interpolation System

- (1) Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and interpolation formula can be used depending on the climate elements.
- (2) Daily, monthly values and many years' means can be interpolated.
- (3) Few predictors are also sufficient for the interpolation.
- (4) No problem if the greater part of daily precipitation predictors is zero.
- (5) Interpolation error (or rather the representativity) can be modelled too.
- (6) Capability for application of background information such as satellite, radar, forecast data.

12. CONCLUSION

To clarify the problem of spatial interpolation in meteorology we have to compare the statistical climatology to the geostatistics in respect of methodology. The statistical climatology based on sample in time is bound to be more powerful than the geostatistics based on only one realisation in time. In meteorology the preference of the geostatistical methods – applied also in GIS – over the statistical climatology leads to a loss of information. Nevertheless appropriate spatial modelling parts must be incorporated into statistical climatology. For that purpose an adequate mathematical background is also necessary of course.

II. THE PROGRAM SYSTEM MISH

II.1 GENERAL COMMENTS

The software MISH consists of two units that are the modelling and the interpolation systems. The interpolation system can be operated on the results of the modelling system!

A, Modelling System

- For monthly climate statistical parameters: deterministic parameters (e.g. expectations), stochastic parameters (e.g. correlations)
- Based on long homogenized monthly series and supplementary model variables. The statistical parameters can be modelled per month on the basis of the monthly series. The deterministic model variables may be as height, topography, distance from the sea etc.
- Additive (e.g. temperature) or multiplicative (e.g. precipitation) model can be used depending on the climate elements.
- Benchmark study, cross-validation test for expected interpolation error or representativity.
- Modelling procedure must be executed only once before the interpolation applications!
- The statistical parameters modelled for a month can be used for the interpolation of arbitrary daily and monthly values within the month!
- 1. Coordinate system: spherical coordinates in decimal degrees ($\phi^{\circ}, \lambda^{\circ}$)
- 2. To cover the interpolation area with a (rectangle) Grid in decimal degrees ($\phi^{\circ}, \lambda^{\circ}$).

Cell size: equidistant dense scale, scale is the same in decimal degrees ($\phi^{\circ}, \lambda^{\circ}$);

 $0.5^{\circ}x0.5^{\circ}$ resolution is suggested ($0.5^{\circ} \approx 0.008333333^{\circ}$)!

The Grid as a matrix: maximum number of rows: 600, maximum number of colums: 900 (e.g. 0.5'x0.5' resolution, 600 rows, 900 colums: 150 000-300 000 km² in Europe).

3. Height data for the Grid (A,2). The height is always model variable.

4. Observation stations with long (homogenized) monthly series within the interpolation area (covered by the Grid (A,2)). Modelling of the statistical parameters for a month is based on the monthly series. However the modelled monthly statistical parameters can be used also to interpolate daily values within the month!

Minimum number of the stations: 10; maximum number of the stations: 500.

Representative station network is suggested.

Minimum length of the series: 20; maximum length of the series: 50.

Length 30-50 is suggested taking into account the temporal representativity as well as the posssible climate change.

5. Other model variables besides the height for the Grid (A,2). The model variables are deterministic variables, e.g. topography, distance from the sea.

Minimum number of model variables besides the height: 0; maximum number of model variables besides the height: 19.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	83

B, Interpolation System

- The interpolation system can be operated on the results of the modelling system!
- Modelling procedure must be executed only once before the interpolation applications!
- Daily, monthly values and many years' means can be interpolated. The statistical parameters modelled for a month can be used for the interpolation of arbitrary daily and monthly values within the month!
- Additive (e.g. temperature) or multiplicative (e.g. precipitation) model and interpolation formula can be used depending on the climate elements.
- Few predictors are also sufficient for the interpolation and no problem if the greater part of daily precipitation predictors is equal to 0.
- The representativity values are modelled too.
- Capability for application of supplementary background information (stochastic variable) e.g. satellite, radar, forecast data.

1. Observations within the interpolation area (covered by the Grid (A,2)) can be daily and monthly values or many years' means.

Minimum number of observations: 1; maximum number of observations: 1000.

- 2. Interpolation:
- a, For given predictand locations (minimum: 1, maximum: 1000) with detailed Results. Predictand locations: spherical coordinates in decimal degrees ($\varphi^{\circ}, \lambda^{\circ}$)
- b, For the Grid (A,2), to obtain Map.
- 3. Background Information for a relatively dense grid covered by the Grid (A,2).

Background Information Grid: in decimal degrees ($\phi^{\circ}, \lambda^{\circ}$).Cell size: equidistant scale (at our

example: $0.15 \lambda^{\circ}$, $0.1 \varphi^{\circ}$); matrix form: maximum number of rows: 600, maximum number of colums: 900. In case of having Background Information the minimum number of observations is 10. The Background Information is appropriate stochastic variable such as satellite, radar or forecast data.

Remark

The modelling and the interpolation systems can be applied directly for interpolation of annual values and many years' annual means as well. In this case the modelling of statistical parameters is based on long homogenized annual series.

The new parts of Interpolation System in Version MISHv1.02

- Missing value interpolation, completion for monthly or daily station data series. (max. number of series: 500; max. length of series for a given month: 4000)
- Interpolation, gridding of monthly or daily station data series for given predictand locations. In case of gridding the predictand locations are the nodes of a relatively dense grid. (max. number of series: 500; max. length of series for a given month: 4000; max. number of predictand locations, gridpoints: 5000)

These new parts can be also operated on the results of the modelling system! The statistical parameters modelled for a month can be used for arbitrary daily and monthly series values separated for the month!

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	84

II.2 THE STRUCTURE OF PROGRAM SYSTEM

Main Directory MISHv1.02:

- MISHMANUAL.PDF

- Subdirectory EXAMPLE

- Directory MISH:

- Subdirectory MODEL:

- Modelling Program and I/O Files of MISH
- Subdirectory **MODPARINTER** (Parameter Files for subdirectory **INTERPOL**)
- Subdirectory **MODELSUB** (Executive subroutines for MODEL.BAT, do not run them)

- Subdirectory INTERPOL:

- Interpolation Program and I/O Files of INTERPOL
- Subdirectory **MODPARINTER** (Parameter Files of subdirectory **INTERPOL**)
- Subdirectory **INTERSUB** (Executive subroutines for INTERPAR.BAT, INTERPRED.BAT, INTERGRID.BAT, do not run them)

- Subdirectory MISHMISS

- Program and I/O Files of MISHMISS
- Subdirectory **MISSSUB** (Executive subroutines, do not run them)

- Subdirectory **MISHINTERSER**

- Program and I/O Files of MISHINTERSER
- Subdirectory **INTERSERSUB** (Executive subroutines, do not run them)

MISH IN PRACTICE

I. Modelling in Subdirectory MODEL

MODEL.BAT: Modelling Procedure. Modelled Statistical Parameters for Interpolation are obtained in Subdirectory MODEL\MODPARINTER.

(To save the Modelled Statistical Parameters is suggested.)

II. Interpolation in Subdirectory INTERPOL

The appropriate monthly Modelled Statistical Parameters for Interpolation must be included by Subdirectory INTERPOL\MODPARINTER.

(Modelled Statistical Parameters must be copied in.)

1. INTERPAR.BAT:

Parametrization and Examination of Observations and Background Information.

2. The further steps can be used optionally

INTERPRED.BAT: Interpolation for given Predictand Locations.

INTERGRID.BAT: Interpolation for the Grid.

Attention: The INTERPAR.BAT must be repeated before the interpolation if the Files of Observations or Background Information are changed!

III. Data Complementing in Subdirectory INTERPOL\MISHMISS

The appropriate monthly Modelled Statistical Parameters must be included by Subdirectory INTERPOL\MODPARINTER. (Modelled Statistical Parameters must be copied in.)

MISHMISS.BAT: Missing Values Completion of Station Data Series.

IV. Interpolation of Series (Gridding) in Subdirectory INTERPOL\MISHINTERSER

The appropriate monthly Modelled Statistical Parameters must be included by Subdirectory INTERPOL\MODPARINTER. (Modelled Statistical Parameters must be copied in.)

MISHINTERSER.BAT: Interpolation of Station Data Series for given Predictand Locations.

Gridding: the locations are the nodes of a relatively dense grid.

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	86

The MODELLING PROGRAM and I/O FILES of Subdirectory MODEL

<u>1. Executive Batch File in Directory MODEL</u></u>

MODEL.BAT: Modelling Procedure

1.1 Subroutines of MODEL.BAT (in MODEL\MODELSUB):

PAR.EXE: Parametrization

STATISTICS.EXE: Estimation of statistical parameters of the data series COMBIN.EXE: Selection of station combinations for neighbourhood modelling STOCHMODEL.EXE: Modelling of stochastic parameters DETMODEL.EXE: Modelling of deterministic parameters BENCHMARK.EXE: Evaluation of modelling, cross-validation test MODELGRID.EXE: Modelling results for the grid

2. Input Files and Input Data in Directory MODEL

(See the Data Files of Subdirectory EXAMPLE)

DATASERIES.DAT:

Monthly data series for a given month. Format of DATASERIES.DAT (max. number of series: 500, suggested length of series: 30): row 1: indexes or numbers of stations (obligatory!) column 1: dates or serial indexes column i+1: series i.

FILAMBDAHST.DAT: Spherical coordinates φ° , λ° and heights for the stations

HEIGHTGRID.DAT: Determination of the grid ($\phi^{\circ}, \lambda^{\circ}$); heights for the grid

MODVARIST.DAT: Model variables for the stations

MODVARIGRID.DAT: Model variables for the grid determined by HEIGHTGRID.DAT

Question on the screen

Model?: (a)dditive (e.g temperature) or (m)ultiplicative (e.g. precipitation)

3. Output and Result Files

3.1 Result Files 1 written in Subdirectory MODEL\MODPARINTER (See: Input Files of Directory INTERPOL) ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, INTPAR1.PAR, HEIGHT.PAR(= HEIGHTGRID.DAT)

3.2 Result Files 2 in Directory MODEL

DETMODSTAT.RES: Statistical results of modelling deterministic parameters

BENCHMARK.RES: Benchmark study, evaluation of modelling

MEANGRID.RES: Long term means interpolated for the grid determined by HEIGHTGRID.DAT

4. Parameter Files

TRANS.PAR, MHTR.PAR, STAT1.PAR, TOPOG.PAR, TAVOLSAG.PAR, MAPCOMB.PAR, REFCOMB.PAR, REFSTCOMB.PAR, STAT2ST.PAR, STAT2.PAR, VARST.PAR, VAR.PAR, REPST.PAR

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	87

The INTERPOLATION PROGRAM and I/O FILES of Subdirectory INTERPOL

<u>1. Executive Batch Files in Subdirectory INTERPOL</u></u>

INTERPAR.BAT: Parametrization and Examination of the Background Information

INTERPRED.BAT: Interpolation for given Predictand Locations

INTERGRID.BAT: Interpolation for the grid determined by HEIGHT.PAR

2. Input Files and Input Data

2.1 Input Files 1 in Subdirectory INTERPOL\MODPARINTER ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, INTPAR1.PAR, HEIGHT.PAR

See: Result Files of Directory MODEL

Attention: Subdirectory MODPARINTER must include the necessary Parameter Files! (Modelled Statistical Parameters must be copied in Subdirectory MODPARINTER.)

2.2 Input Files 2 in Subdirectory INTERPOL

(See the Data Files of Subdirectory EXAMPLE)

OBSERVED.DAT: Observations and coordinates (min. number: 1; max. number: 1000)

BACKINFGRID.DAT: Background Information for a grid inside the grid determined by HEIGHT.PAR

PREDTANDFILA.DAT: Predictand coordinates (min. number: 1; max. number: 1000) (Input of **INTERPRED.BAT**)

3. Output and Result Files in Subdirectory INTERPOL

INTERPAR.RES: Output of INTERPAR.BAT (if we have Background Information) **INTERPRED1.RES:** Output of INTERPRED.BAT (detailed Results)

INTERPRED2.RES: Output of INTERPRED.BAT (less detailed Results)

INTERGRID1.RES: Output of INTERGRID.BAT (Interpolation without Background Information)

INTERGRID2.RES: Output of INTERGRID.BAT (Interpolation with Background Information)

4. Parameter Files

BACKINFH.PAR, BACKINFM.PAR, OBSERVED1.PAR, INTPAR2.PAR, MODPAR.PAR

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	88

The PROGRAM and I/O FILES of Subdirectory INTERPOL\MISHMISS

1. Executive Batch File in Directory MISHMISS

MISHMISS.BAT: Data Complementing Procedure

Subroutines of MISHMISS.BAT (in MISHMISS\MISSSUB):

INTERPAR3.EXE: Parametrization INTERMISS.EXE: Data Complementing Subroutine

2. Input Files and Input Data

<u>2.1 Input Files 1 in Subdirectory INTERPOL\MODPARINTER</u> ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, INTPAR1.PAR, HEIGHT.PAR

See: Result Files of Directory MODEL Attention: Subdirectory MODPARINTER must include the necessary Parameter Files! (Modelled Statistical Parameters must be copied in Subdirectory MODPARINTER.)

2.2 Input Files 2 in Subdirectory MISHMISS

(See the Data Files of Subdirectory EXAMPLE)

OBSSERIES.DAT:

Observed station data series with missing values. Format of OBSSERIES.DAT (max. number of series: 500; max. length of series: 4000): row 1: indexes or numbers of stations (obligatory!) column 1: dates or serial indexes column i+1: series i. Mark of Missing Values: 9999

OBSFILA.DAT: Coordinates of Stations

3. Output and Result File in Subdirectory MISHMISS

OBSSERIES.RES: Complemented station data series

4. Parameter Files

MODPAR.PAR, MISS1.PAR, MISS2.PAR

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	<i>89</i>

The PROGRAM and I/O FILES of Subdirectory INTERPOL\MISHINTERSER

1. Executive Batch File in Directory MISHINTERSER

MISHINTERSER.BAT: Series Interpolation Procedure

Subroutines of **MISHINTERSER.BAT** (in **MISHINTERSER\INTERSERSUB**):

INTERPAR4.EXE: Parametrization INTERSER.EXE: Series Interpolation Subroutine

2. Input Files and Input Data

2.1 Input Files 1 in Subdirectory INTERPOL/MODPARINTER ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, INTPAR1.PAR, HEIGHT.PAR

See: Result Files of Directory MODEL Attention: Subdirectory MODPARINTER must include the necessary Parameter Files! (Modelled Statistical Parameters must be copied in Subdirectory MODPARINTER.)

2.2 Input Files 2 in Subdirectory MISHINTERSER

(See the Data Files of Subdirectory EXAMPLE)

OBSSERIES.DAT:

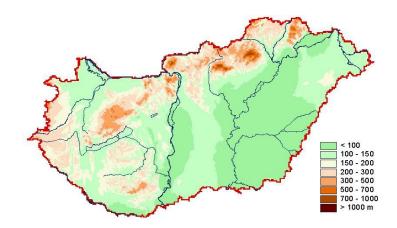
Observed station data series. Format of OBSSERIES.DAT (max. number of series: 500; max. length of series: 4000): row 1: indexes or numbers of stations (obligatory!) column 1: dates or serial indexes column i+1: series i.

OBSFILA.DAT: Coordinates of Stations

PREDTANDFILA.DAT: Coordinates of Predictand Locations (max. number: 5000) **Gridding:** the locations are the nodes of a relatively dense grid.

3. Output and Result Files in Subdirectory MISHINTERSER

INTERSERIES.RES: Interpolated (Gridded) Series


INTERSERSTAT.RES: Statistical Results for the Predictand Locations

4. Parameter Files

MODPAR.PAR, OBSSER.PAR

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	<i>90</i>	

III. EXAMPLE FOR APPLICATION OF MISH SYSTEM

Figure 1. Map of Hungary

Interpolation Area: Transdanubia (the western part from Danube in Hungary) **Modelled Elements:** (Monthly, daily) mean temperature in September and (monthly, daily) precipitation sum in November.

Interpolated Elements: Daily mean temperature for a day in September and daily precipitation sum for a day in November.

Missing Values Completion of Station Data Series: Monthly mean temperature series in September and monthly precipitation sum series in November.

Gridding: Monthly mean temperature series in September and monthly precipitation sum series in November.

III.1 EXAMPLE FOR TEMPERATURE

III.1.1 MODELLING PART (Directory MODEL)

Input Data Files

(See the Data Files Format in Subdirectory EXAMPLE\ HUNTEMP\DATA\MODEL) DATASERIES.DAT: Series of monthly mean temperature in September; 30 stations and 30 years. (Not genuine data.)

FILAMBDAHST.DAT: spherical coordinates in decimal degrees φ° , λ° and heights for the stations

HEIGHTGRID.DAT: grid (0.5'x0.5' resolution) covering Transdanubia; heights for the grid MODVARIST.DAT: 15 model variables (AURELHY principal components) besides the height for the stations

MODVARIGRID.DAT: the model variables for the grid determined by HEIGHTGRID.DAT MODEL (answer to the question on the screen): (a)dditive

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	91

Output and Result Files

Result Files 1: Modelled Climate Statistical Parameters for September written in Subdirectory MODEL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Input Files of Directory INTERPOL)

Result Files 2 (written in Directory MODEL) are the following:

MODELLING OF DETERMINISTIC PART (linear regression)

FINAL RESULT:

number of model variables: 6 correlation: 0.921 percentage: 61.1% model variables and coefficients: h 5 9 10 12 14

-0.0033 0.0284 0.0482 0.0324 -0.0924 -0.0274

(percentage=(1-RMSE/(Standard Deviation))*100%)

```
DETAILED RESULTS:
```

number of variables: 1 h	correlation: 0.814	percentage: 41.9%
-0.004		
number of variables: 2	correlation: 0.879	percentage: 52.4%
h 12		
-0.004 -0.079		
number of variables: 3	correlation: 0.901	percentage: 56.6%
h 10 12		
-0.004 0.042 -0.081		
number of variables: 4		percentage: 57.9%
h 3 10		
-0.004 -0.011 0.047		
number of variables: 5		percentage: 60.6%
h 5 9		
-0.004 0.024 0.045		(1)
number of variables: 6		
h 5 9		
	0.032 -0.092 -0.027	
number of variables: 7	9 10 12	
-0.004 -0.027 0.038		
number of variables: 8		
	5 9 10	
	0.036 0.045 0.041	
0.000 0.000	0.000 0.040 0.041	0.000
•		

Figure 2. Statistical results of modelling deterministic parameters (DETMODSTAT.RES)

CARPATCLIM <i>Report</i>		Date 01/03/2013	Version <i>final</i>	Page 92
BENCHMARK S	TUDY: cro	ss-validation test,	interpolation betwee	n the stations
		UES (REP) FOR THE S	TATIONS	
REP=1-RMSE/				
		with optimum param with modelled para		
ST. INDEX	REPop	REPmp		
1	0.893	0.795		
2	0.847	0.779		
3	0.860	0.800		
4	0.916	0.638		
5	0.942	0.705		
6	0.869	0.557		
7	0.915	0.586		
8	0.923	0.885		
9	0.891	0.760		
10	0.883	0.829		
11	0.906	0.606		
	•			
	•			
19	0.828	0.757		
20	0.843	0.818		
21	0.864	0.852		
22	0.879	0.623		
23	0.845	0.827		
24	0.899	0.742		
25	0.919	0.863		
26	0.892	0.848		
27	0.863	0.792		
28	0.902	0.871		
29	0.895	0.813		
30 MEAN	0.876	0.680		
MEAN	0.885	0.766		

Figure 2. Benchmark study, evaluation of modelling (BENCHMARK.RES)

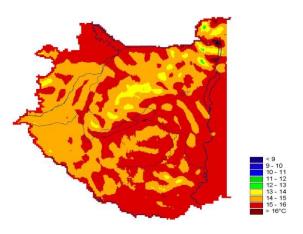


Figure 3. Modelled expectation (or interpolated many years' mean) of monthly mean temperature in September (MEANGRID.RES)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	<i>93</i>

III.1.2 INTERPOLATION PART (Directory INTERPOL)

Input Files and Input Data

(See the Data Files Format in Subdirectory EXAMPLE\HUNTEMP \DATA\INTERPOL)

Input Files 1: Modelled Climate Statistical Parameters for September in Subdirectory INTERPOL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Output Files of Directory MODEL)

Input Data Files 2 (in Directory INTERPOL)

OBSERVED.DAT: 49 daily mean temperature observations for a day in September and the observing locations (coordinates $\varphi^{\circ}, \lambda^{\circ}$)

BACKINFGRID.DAT: Forecast data as Background Information for a grid (6'x9' resolution) inside the grid (0.5'x0.5' resolution) determined by HEIGHT.PAR

PREDTANDFILA.DAT: 121 predictand coordinates $\varphi^{\circ}, \lambda^{\circ}$ (Input of INTERPRED.BAT)

Result Files (written in Directory INTERPOL) are the following

EXAMINATION OF BACKGROUND INFORMATION Correlation: 0.300 Constant: -0.354 Coefficient: 0.571 Interpolated Background Information for the Observing Locations: 14.08 13.80 13.23 12.75 13.20 13.59 12.20 11.62 14.04

Figure 4. Correlation and regression analysis between obsevations and background information (forecast data) (INTERPAR.RES)

Number of Predictands: 121 . Predictand 64: 17.600000 47.400000 Predictor Indexes : 30 16 14 12 13 10 11 Weighting Factors: 0.204 0.065 0.199 0.178 0.114 0.129 0.110 Interpolation without Background Information: Predictand Value: 14.77 Representativity: 0.814 Interpolation with Background Information: Predictand Value: 14.74 Representativity: 0.822

Figure 5. Detailed result of interpolation for the given predictand locations (INTERPRED1.RES)

CARPATCLIM <i>Report</i>	Date 01/03/2013	Version <i>final</i>	Page 94

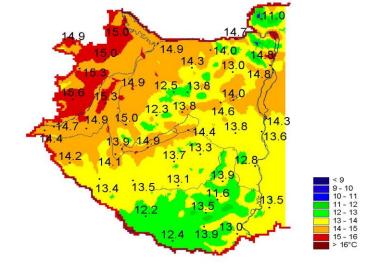


Figure 6. Interpolation without background information for the grid (0.5'x0.5' resolution) determined by HEIGHT.PAR (INTERGRID1.RES)

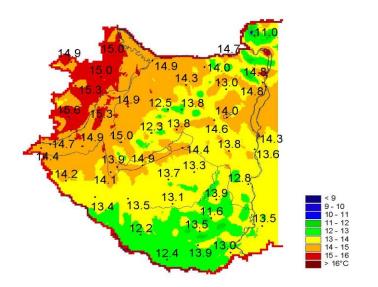


Figure 7. Interpolation with background information (forecast data) for the grid (0.5'x0.5' resolution) determined by HEIGHT.PAR (INTERGRID2.RES)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	95

III.1.3 DATA SERIES COMPLEMENTING (Subdirectory INTERPOL\MISHMISS)

Input Files and Input Data (See the Data Files Format in Subdirectory EXAMPLE\HUNTEMP \DATA\INTERPOL\MISHMISS)

Input Files 1: Modelled Climate Statistical Parameters for September in Subdirectory INTERPOL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Output Files of Directory MODEL)

Input Data Files 2 (in Subdirectory INTERPOL\MISHMISS)

OBSSERIES.DAT: Monthly mean temperature series in September with missing values; 30 stations and 29 years. Mark of missing values: 9999.00 OBSFILA.DAT: spherical coordinates in decimal degrees φ° , λ° for the stations

Result File (written in Subdirectory INTERPOL\MISHMISS) is the following:

OBSSERIES.RES: The complemented data series (See in Subdirectory EXAMPLE\HUNTEMP\RESULTS\INTERPOL\MISHMISS)

III.1.4 INTERPOLATION OF SERIES, GRIDDING (Subdirectory INTERPOL\MISHINTERSER)

Input Files and Input Data (See the Data Files Format in Subdirectory EXAMPLE\HUNTEMP\DATA\INTERPOL\MISHINTERSER)

Input Files 1: Modelled Climate Statistical Parameters for September in Subdirectory INTERPOL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Output Files of Directory MODEL)

Input Data Files 2 (in Subdirectory INTERPOL\MISHINTERSER) OBSSERIES.DAT: Monthly mean temperature series in September without missing values; 30 stations and 29 years

OBSFILA.DAT: spherical coordinates in decimal degrees $\varphi^{\circ}, \lambda^{\circ}$ for the stations

PREDTANDFILA.DAT: spherical coordinates in decimal degrees φ° , λ° of 768 grid points,

 $0.1 \lambda^{\circ} \ge 0.1 \varphi^{\circ}$ resolution.

(Gridding: the grid points are the predictand locations)

Result Files (written in Subdirectory INTERPOL\MISHINTERSER) are the following:

INTERSERIES.RES: Interpolated (Gridded) Series for the 768 grid points INTERSERSTAT.RES: Statistical Results of the Interpolation for the 768 grid points (See in Subdirectory EXAMPLE\HUNTEMP\RESULTS\INTERPOL\MISHINTERSER)

CARPATCLIM	Date	Version	Page	
Report	01/03/2013	final	96	

III.2 EXAMPLE FOR PRECIPITATION

III.2.1 MODELLING PART (Directory MODEL)

Input Data Files

(See the Data Files Format in Subdirectory EXAMPLE\HUNPREC \DATA\MODEL) DATASERIES.DAT: Series of monthly precipitation sum in November; 117 stations and 30 years. (Not genuine data.)

FILAMBDAHST.DAT: spherical coordinates in decimal degrees φ° , λ° and heights for the stations

HEIGHTGRID.DAT: grid (0.5'x0.5' resolution) covering Transdanubia; heights for the grid MODVARIST.DAT: 15 model variables (AURELHY principal components) besides the height for the stations

MODVARIGRID.DAT: the model variables for the grid determined by HEIGHTGRID.DAT MODEL (answer to the question on the screen): (m)ultiplicative

Output and Result Files

Result Files 1: Modelled Climate Statistical Parameters for November written in Subdirectory MODEL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Input Files of Directory INTERPOL)

Result Files 2 (written in Directory MODEL) are the following:

```
MODELLING OF DETERMINISTIC PART (linear regression)
Multiplicative model: logarithmic values are used
FINAL RESULT:
number of model variables: 5
                          correlation: 0.530 percentage: 15.2%
model variables and coefficients:
    h 3 5
                            6
                                    9
  0.0004 0.0018 -0.0023 -0.0031 0.0066
(percentage=(1-RMSE/(Standard Deviation))*100%)
DETAILED RESULTS:
number of variables: 1 correlation: 0.391 percentage: 8.0%
     h
  0.001
number of variables: 2 correlation: 0.449
                                       percentage: 10.7%
     h
        9
  0.001 0.006
number of variables: 3
                     correlation: 0.494 percentage: 13.1%
    h 3 9
  0.000 0.002 0.007
number of variables: 4 correlation: 0.521 percentage: 14.7%
    h
        3 6
                      9
  0.000 0.002 -0.003 0.007
number of variables: 5 correlation: 0.530 percentage: 15.2%
    h 3 5
                      6 9
  0.000 0.002 -0.002 -0.003 0.007
number of variables: 6 correlation: 0.534
                                       percentage: 15.4%
    h 3 5
                                       9
                      6 8
  0.000 0.002 -0.002 -0.003 -0.002
                                   0.007
```

Figure 8. Statistical results of modelling deterministic parameters (DETMODSTAT.RES)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	97

BENCHMARK STUDY: cross-validation test, interpolation between the stations

REPRESENTATIVITY VALUES (REP) FOR THE STATIONS REP=1-RMSE/(Standard Deviation) REPop: interpolation with optimum parameters REPmp: interpolation with modelled parameters

REPRESENTATIVITY VALUES FOR THE STATIONS

ST.	INDEX	REPop	REPmp
	1	0.739	0.710
	2	0.742	0.691
	3	0.831	0.720
	4	0.751	0.735
	5	0.714	0.586
	6	0.803	0.768
	7	0.858	0.840
	8	0.684	0.622
	9	0.763	0.693
	10	0.820	0.804
	11	0.814	0.770
	106 107 108 109 110 111 112 113 114 115 116 117 MEAN	0.863 0.793 0.818 0.825 0.853 0.860 0.830 0.813 0.743 0.777 0.806 0.764 0.816	0.836 0.757 0.784 0.746 0.807 0.759 0.790 0.693 0.650 0.769 0.750 0.750 0.709 0.766

Figure 9. Benchmark study, evaluation of modelling (BENCHMARK.RES)

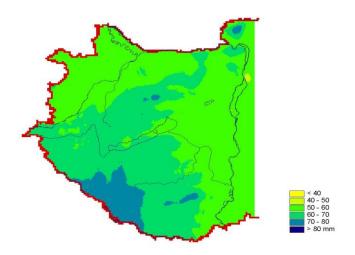


Figure 10. Modelled expectation (or interpolated many years' mean) of of monthly precipitation sum in November (MEANGRID.RES)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	<i>98</i>

III.2.2 INTERPOLATION PART (Directory INTERPOL)

Input Files and Input Data

(See the Data Files Format in Subdirectory EXAMPLE\HUNPREC \DATA\INTERPOL)

Input Files 1: Modelled Climate Statistical Parameters for November in Subdirectory INTERPOL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Output Files of Directory MODEL)

Input Data Files 2 (in Directory INTERPOL) OBSERVED.DAT: 43 daily precipitation sum observations for a day in November and the observing locations (coordinates $\varphi^{\circ}, \lambda^{\circ}$) BACKINFGRID.DAT: No PREDTANDFILA.DAT: 121 predictand coordinates $\varphi^{\circ}, \lambda^{\circ}$ (Input of INTERPRED.BAT)

Result Files (written in Directory INTERPOL) are the following

Number of Predictands: 121 Predictand 64: 17.600000 47.400000 8 Predictor Indexes : 10 27 25 9 11 13 Weighting Factors: 0.422 0.199 0.080 0.191 0.058 0.002 0.048 Interpolation: Predictand Value: 24.40 Representativity: 0.663

Figure 11. Detailed result of interpolation for the given predictand locations (INTERPRED1.RES)

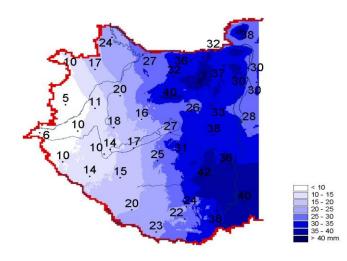


Figure 12. Interpolation without background information for the grid (0.5'x0.5' resolution) determined by HEIGHT.PAR (INTERGRID1.RES)

CARPATCLIM	Date	Version	Page
Report	01/03/2013	final	<i>99</i>

III.2.3 DATA SERIES COMPLEMENTING (Subdirectory INTERPOL/MISHMISS)

Input Files and Input Data (See the Data Files Format in Subdirectory EXAMPLE\HUNPREC\DATA\INTERPOL\MISHMISS)

Input Files 1: Modelled Climate Statistical Parameters for November in Subdirectory INTERPOL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Output Files of Directory MODEL)

Input Data Files 2 (in Subdirectory INTERPOL\MISHMISS)

OBSSERIES.DAT: Monthly precipitation sum series in November with missing values; 117 stations and 30 years. Mark of missing values: 9999.00 OBSFILA.DAT: spherical coordinates in decimal degrees φ° , λ° for the stations

Result File (written in Subdirectory INTERPOL\MISHMISS) is the following:

OBSSERIES.RES: The complemented data series (See in Subdirectory EXAMPLE\HUNPREC\RESULTS\INTERPOL\MISHMISS)

III.2.4 INTERPOLATION OF SERIES, GRIDDING PART (Subdirectory INTERPOL\MISHINTERSER)

Input Files and Input Data (See the Data Files Format in Subdirectory EXAMPLE\HUNPREC\DATA\INTERPOL\MISHINTERSER)

Input Files 1: Modelled Climate Statistical Parameters for November in Subdirectory INTERPOL\MODPARINTER: ALF.PAR, BET.PAR, GAM.PAR, MED.PAR, DEL.PAR, POTPRED.PAR, HEIGHT.PAR, INTPAR1.PAR (See: Output Files of Directory MODEL)

Input Data Files 2 (in Subdirectory INTERPOL\MISHINTERSER)

OBSSERIES.DAT: Monthly precipitation sum series in November without missing values; 117 stations and 30 years

OBSFILA.DAT: spherical coordinates in decimal degrees $\varphi^{\circ}, \lambda^{\circ}$ for the stations

PREDTANDFILA.DAT: spherical coordinates in decimal degrees φ° , λ° of 768 grid points,

 $0.1 \lambda^{\circ} \ge 0.1 \varphi^{\circ}$ resolution.

(Gridding: the grid points are the predictand locations)

Result Files (written in Subdirectory INTERPOL\MISHINTERSER) are the following:

INTERSERIES.RES: Interpolated (Gridded) Series for the 768 grid points INTERSERSTAT.RES: Statistical Results of the Interpolation for the 768 grid points (See in Subdirectory EXAMPLE\HUNPREC\RESULTS\INTERPOL\MISHINTERSER)

References

Cressie, N., 1991: "Statistics for Spatial Data.", Wiley, New York, 900p.

Benichou, P., Le Breton, O., 1986: "Prise en compte de la topographie pour la cartographie des champs pluviométriqes statistiques." Prix Norbert Gerbier, Direction de la Météorologie Nationale.

Bihari, Z., Szentimrey, T., Lakatos, M., Szalai, S., 2007: "Verification of radar precipitation measurements with interpolated surface data", Advances in Geosciences (submitted)

Gandin, L., 1965: "Objective analysis of meteorological fields", Israel Program for Scientific Translations, Jerusalem, Israel.

Szentimrey, T., 2002: "Statistical problems connected with the spatial interpolation of climatic time series.", Home page:http://www.knmi.nl/samenw/cost719/documents/Szentimrey.pdf

Szentimrey, T., 2004: "Something like an Introduction", Proceedings of the Fourth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 2003; WMO, WCDMP-No. 56, pp. 5-16.

Szentimrey, T., Bihari, Z., Szalai, S., 2005: "Meteorological Interpolation based on Surface Homogenized Data Basis (MISH)", European Geosciences Union, General Assembly 2005, Vienna, Austria, 24 - 29 April 2005

Szentimrey, T., Bihari, Z., Szalai, S., 2005: "Limitations of the present GIS methods in respect of meteorological purposes", 5^{th} Annual Meeting of the European Meteorological Society (EMS)/7th ECAM , Utrecht, Netherlands, 12-16 September 2005

Szentimrey, T., Bihari, Z., 2006: "MISH (Meteorological Interpolation based on Surface Homogenized Data Basis)", COST Action 719 Final Report, The use of GIS in climatology and meteorology, Edited by Ole Einar Tveito, Martin Wegehenkel, Frans van der Wel and Hartwig Dobesch, 2006, pp. 54-56

Szentimrey, T., Bihari, Z., 2007: "Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis)", Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2004, COST Action 719, COST Office, 2007, pp. 17-27

Szentimrey, T., 2007: "Manual of homogenization software MASHv3.02", Hungarian Meteorological Service, p. 65

Szentimrey, T, Bihari, Z., Szalai,S., 2007: "Comparison of geostatistical and meteorological interpolation methods (what is what?)", Spatial Interpolation for climate data - the use of GIS in climatology and meteorology, Edited by Hartwig Dobesch, Pierre Dumolard and Izabela Dyras, 2007, ISTE ltd., London, UK, 284pp, ISBN 978-1-905209-70-5, pp.45-56

Tveito, O., E., Schöner, W., 2002: "Applications of spatial interpolation of climatological an meteorological elements by the use of geographical information systems (GIS)", Report no. 1/WG2 Spatialisation/ COST-719, DNMI report 28/02 KLIMA, Oslo, Norway